
This paper describes an in-home digital network architecture
that supports both real-time and non-real-time communica-
tion. The architecture deploys a distributed token mechanism
to schedule communication streams and to offer guaranteed
quality-of-service. Essentially, the token mechanism prevents
collisions to occur in the network, thus making the network
deterministic. The distributed token scheduler uses a preemp-
tive earliest deadline first strategy, which guarantees a possi-
ble bandwidth utilization of 100 percent. To allow non-real-
time communication however, only part of the available band-
width is allocated by the scheduler to real-time traffic, typical-
ly 80 percent. The paper describes protocols to counter token
loss and token duplication. The network is simulated and the
paper shows some results from this simulation. Based on low-
cost ethernet hardware, a prototype of the network is built and
tested. Last, the paper describes future directions.

Keywords: in-home digital network, real-time network,
token network, QoS, low-cost

Introduction

Lately, in-home digital networks start to enter our homes,
offering possibilities and services that were unknown until
recently. Terms like "ubiquitous computing" and "ambient
intelligence" come to mind. Examples of such systems are
HAVi [HAVI], Jini [JINI] and Universal Plug-and-Play
[UPNP]. Often, these systems concentrate solely on
multimedia streams and do not offer hard real-time
guarantees. They require substantial resources in terms of
processing power, memory and energy consumption.
Additionally, they are too expensive for inclusion in small
devices, like temperature sensors. The proposed real-time
network is one of the innovations of a project that tackles
these problems.
In the first section of this paper we will give an outline of
the At Home Anywhere -@HA- project and its goals. The
second section is dedicated to the network, the distributed
token scheduler and network protocols. Then we will show
some simulation results. The paper ends with conclusions
and future directions. Where appropriate, we will comment
on related work.

 At Home Anywhere

In the context of in-home networking, where devices have
to work together, several challenges do exist. To name just
a few:
• compatibility and interoperability and
• network incompatibility: presently, a house has several
separated distribution and communication infrastructures:
telephone, cable TV and radio, satellite TV, PC network,
connection between thermostat and central heating boiler,
etc. In most cases these infrastructures are isolated islands
that interconnect only on rare occasions. In general, these
infrastructures can be divided in three classes:
entertainment: audio, video, games, etc. This class
requires high bandwidth and real-time responses.
Characteristic for this class is isochronous, streaming data;
control: sensors and actuators, e.g. central heating control,
fire detection, burglar alarm, etc. Control uses low
bandwidth, but requires a high degree of dependability.
Some devices may need real-time services;
information: PC applications, WWW browsing, etc. This
class uses bandwidth in bursts of data, and only needs best-
effort responses.
The first step to connecting appliances is one common
inexpensive infrastructure that supports entertainment,
control and information. This infrastructure may
incorporate different types of networks, including wireless
networks. Most efforts till now concentrate on only one
class of appliances, mostly entertainment.
The first objective of the @HA project is a network for
entertainment, control and information that supports both
real-time and non-real-time data, as well as streaming
media. This network will be based on a new variety of
rotating token, giving bandwidth to the appliance that has
the token. In existing timed-token networks, every node in
the network is visited once during one rotation of the token.
In worst case, timed-token networks have a utilization that
is quite low, around 33 percent. Main properties are
described in [SEVCIK] and [MALCOLM]. Examples are
IEEE 802.4 token bus, IEEE 802.5 token ring and FDDI.
Although not a primary objective, implementation of an IP
interface is recommended to maintain compatibility with
"normal" IP-based applications;
• data storage redundancy and data incompatibility: keyThis work is sponsored by the Netherlands Organization for Sci-

entific Research (NWO) under grant number 612.060.111

An In-Home Digital Network Architecture for Real-Time
and Non-Real-Time Communication

Hans Scholten, Pierre G. Jansen, Ferdy Hanssen and Tjalling Hattink
University of Twente, Department of Computer Science

INF 4037, POB 217, 7500 AE Enschede, the Netherlands
email: {scholten, jansen, hanssen}@cs.utwente.nl



issue for integration is a mixed-media storage server, that
will provide storage for all appliances and devices at home.
The storage server must support streaming media, as this is
one of the important data types in the system. One of the
functions the storage server must offer is simultaneous real-
time recording and playback of multiple video and audio
streams on harddisk and optical disc (DVD). Time shifting
(the ability to pause live broadcasts) is one of the
applications of such a storage server. Information is stored
once and will be accessible by all. Because not all
appliances use the same data format set, real-time data
conversion is needed between storage and appliance.
Efficient storage and retrieval of data is essential, as the
amount of data in the file server is huge [BOSCH];
• resources: even small appliances (resource-lean), like a
temperature or light sensor, should be connected to the
network, but their size and prize preclude "heavy"
processors to accomplish that. @HA researches the concept
of delegation, or controlled invocation: small systems use
their limited processing power to implement at least a
network stack to connect to the network and a small real-
time operating system kernel to handle the -lightweight-
protocols. But even such an implementation with a small
footprint operating system kernel may be too resource-rich.
In some cases a simple state machine that handles the
network protocols is already enough to do the job.
Hardware can range from simple PIC to full-fledged
processor system, while software can range from a simple
runtime system executing a state machine to an operating
system executing a complex program. In our case we
distinguish three classes of appliances:
3C (3+ cent) appliance: simple devices that implement
only a network stack to connect to the system. There is even
no processing power enough to implement the delegation
protocol. Network handling is done by a PIC executing a
state machine. Memory requirements for this class of
devices are low (<1kB). Other devices can scan these
devices to get their readings. A temperature sensor is an
example of such a device;
3D (3+ dollar) appliance: medium complex devices that
implement network stack and delegation protocols on a
small, smart card-like embedded processor. Memory
requirements are medium, between 8 and 64 kB. Examples
are PC peripherals, like printers and scanners;
300D (300+ dollar) appliance: powerful devices,
controlled by a complex embedded computer. These
devices can scan 3C devices and are used for delegation by
3D devices. The embedded computer can be used for other
functions as well, e.g. it can get an electronic program guide
(EPG) from the satellite video stream, interpret the EPG
and switch on and off the digital video recorder according
to the preferences of members of the household. 300D
devices have a full-fledged operating system (e.g. Linux)

and contain peripheral devices, like disks. Their memory
requirements are high (>1MB). Examples are TV and PDA.
Delegation is the basis for location transparency: the user
interface and underlying application of any appliance are
available anywhere in the house. For instance, the settings
of the thermostat of the central heating may be inspected
and changed on any available display, be it TV set, PDA or
PC. The concept of delegation is not new. The X-window
system separates application and user interface, so each can
execute on a different network node. But this system has a
lot of information interchange between client and server
and is not suitable. HAVi [havi] does something similar. It
distinguishes between controlling and controlled device.
Applications and user interfaces (called havlets) are written
in Java and allow for flexible and powerful extensions and
modifications. But some devices we have in mind might be
to small, even for Java virtual machines. HAVi is heavily
based on the IEEE1394 network standard [IEEE1394] and
uses its underlying protocols. Additionally, HAVi is only
meant for audio and video devices;
• ad hoc configuration: generally known as plug-and-
play. Both network scheduling and lightweight protocols
must support robust and fault tolerant dynamic (ad hoc)
configuration.

Real-time network

In this section we will concentrate on the network proper:
RT-net. First we will give a short-list with requirements and
constraints for the network. Then an overview is given of
the network: protocol, token, scheduling and feasibility
analysis. Token passing and network faults come next. The
last subject in this section is network management.
Requirements
The requirements for RT-net are as follows:
• based on existing hardware and protocols where
possible: this will help to keep the costs down. For instance,
ethernet -protocols and hardware- is proven technology,
cheap and dependable;
• QoS guarantees for real-time traffic: for multimedia
transports bandwidth reservations are necessary. Real-time
constraints -meeting deadlines- is also important for
"command and control" type of messages;
• open for non-real-time traffic: there is always a certain
amount of non-real-time traffic present in the system. The
network must at any time reserve a predetermined amount
of bandwidth for this type of communication;
• fault tolerance: the physical layer does normally not
guarantee that all network packets will arrive. So higher
levels in the system should take care of error recovery. This
is especially true for tokens. In general, however, it will be
impossible to guarantee no deadline misses when network
faults occur;
• plug-and-play: addition and removal of nodes must be



recognized by the network and the token scheduler must
react on these events.
Network overview
RT-net is based on the CSMA/CD ethernet protocol
[IEEE802]. In effect this means that RT-net can be build on
any existing ethernet specification and regular ethernet
hardware can be used without modifications. CSMA/CD
uses an exponential back-off mechanism to resolve
collisions, which makes the network non-deterministic, and
thus non-real-time. To make it deterministic, a token-based
protocol is deployed to avoid collisions, just like RETHER
[RETHER] in development by the University of New York.
RETHER distributes its token among the nodes in a simple
static round-robin algorithm. RT-net however, uses a more
sophisticated algorithm, where the token is allocated to
nodes according to their bandwidth demands. A preemptive
earliest deadline first (EDF) scheduler is used to determine
the route a token follows in the network. This type of
scheduler has the advantage over other schedulers that it
can achieve a utilization of 100 percent. However, in case
of overloading its performance will degrade dramatically.
Whenever a node has the token -the active node- it may use
the network for some time: the token hold time or THT.
THT is determined by the scheduler and is likely to be
different for each node. Typically the node will send one
frame of a periodic multimedia stream. The EDF scheduler
is distributed over the nodes and the token is the place
where the schedule is kept -nodes will keep backups of the
schedule though-. If a node has the token and it wants to add
or remove a stream, it calculates a new schedule and acts
upon it. Calculating a new schedule in case of stream
addition means the node does an EDF feasibility analysis to
determine if a newly added real-time stream will meet its
deadlines without making other streams miss theirs. EDF
feasibility analysis is simple [BUTTAZZO]: 

where Bi is the network bandwidth of stream i and B is the
maximum bandwidth of the given network. Actually, the
maximum bandwidth is slightly less because of the
overhead for token transmission and ethernet packet
overhead.
Token passing and network faults
When the scheduler at the active node decides that another
node must become active it stores the global schedule
information in the token and sends the whole package to the
new node. This is a critical action and it should never occur
that the token becomes lost, or worse, duplicated. When a
token is lost the schedule is lost too and the network stalls.
Duplicated tokens mean that more than one node will make
schedules and collisions will occur, causing deadline
misses and non-deterministic behaviour. To prevent this the

concept of monitor is introduced. When the active node
relinquishes the token, this node becomes the monitor for
the new active node. Monitoring is a three step process: (1)
the monitor sends the token to the new active node. If the
token is garbled the active node will request a new token.
This happens only once. If a second token is garbled too,
the active node stays inactive, while the monitor times-out
and recovers the token. (2) The active node is now in the
"transmission state" for the duration of THT. While the
active node transmits, the monitor waits for a reply from the
active node. It sets a timer for the duration of THT. (3) At
the end of THT the active node must send a reply to the
monitor signifying that it is still alive and sends the token to
a new active node. The old monitor now ends its activity,
the old active node becomes monitor, and the new active
node begins transmitting. Then the process starts all over.
Many things may go wrong. Detectable token loss
situations are: token does not arrive at new active node,
reply from active node is lost, active node dies before
sending a reply, and the monitor dies. Undetectable token
loss occurs when: the active node dies after sending a reply,
and monitor and active node die simultaneously. Token
duplication is difficult to detect, but there are some hits the
network will give: a token arrives at a node that already
holds a token, and streams miss their deadlines because
nodes cannot resolve bandwidth requirements. If a node
detects this, it will delete the token. The network will
probably end up without token and initiates a reset.
Network management
Besides scheduling RT-net has to perform some network
management as well. We will only summarize network
management operations here. Before the network can do
anything it has to be initialized. This also happens if a token
is lost (network reset). Other management operations are:
adding nodes, removing nodes, adding streams and
removing streams.

RT-net simulation and prototype

To validate correctness, robustness and usability of RT-net
a simulation of the network protocols is made. After that a
prototype is realized for demonstration and calibration of
the simulation. As simulation tool OMNeT++ [OMNET] is
used. Reasons for choosing this package are: it is open
source; it uses a well-known implementation language
(C++); and it provides dynamic visual feedback and
statistics of the simulation. The simulation model has three
layers:
• the ethernet layer: this layer provides basic support for
ethernet packets and the CSMA/CD algorithm. Typical
bandwidth is 10 or 100 Mbps. Packet loss ratio is
configurable;
• the RT-net layer: the actual RT-net is simulated in this
layer. It uses the underlying ethernet layer to send and

U
Bi

B
----- 1≤

i 1=

n

∑=



receive packets, tokens and control messages. It provides a
control interface to the application layer for passing events
and for creating and deleting real-time streams. The model
is decentralized: every node is simulated by a separate
module and is governed by its own parameters. Only start-
up configuration parameters, like number of nodes and
network bandwidth) are shared between all nodes;
• the application layer: this layer controls the RT-net
simulation and simulates the behaviour of applications. The
current application layer can send the following control
messages: go on-line, go off-line, and add stream. This set
is far from complete, but sufficient for the simulation.
Figure 1 contains dynamic graphical output from the
simulator where the EDF scheduling of a set of periodic
streams is shown. Only three streams from this set are
shown. The grey (light) line depicts the time left until the
next absolute deadline for that stream. This time decreases
linearly and will cross the horizontal axis at the start of the
next period for that stream.The black line is the remaining
streaming time for that stream during that period. When the
stream is transmitted this line decreases linearly with the
number of bytes sent. A horizontal black line clearly shows
where the stream is preempted by another stream, so no
collisions occur in the network.
From the simulation we found the following characteristics:
the smaller the stream periods, the higher the overhead:
this is caused by the token overhead. When a period is low
streams become ready more often and a token has to be
sent; the higher the offered load, the higher the overhead
(with some exceptions): this is the effect of ethernet packet
overhead. If a stream uses more bandwidth, more ethernet
packets are used. The exception occurs when the offered
load exceeds 0.8 maximum bandwidth. Streams will be
rejected and the number of running streams is lower than
the number of offered streams.

Some figures calculated from the simulation are: average
overhead per stream related to total bandwidth: 0.54%;
average worst-case overhead per stream related to total
bandwidth: 0.78%; average overhead per stream related to
effective stream utilization: 1.33%; and average worst-case
overhead per stream related to effective stream utilization:
1.95%. Feasibility analysis always calculates the worst-
case overhead and uses that value to check that total
utilization does not exceed the maximum real-time
utilization. This was confirmed by the simulation, where
worst-case overhead is higher than the real overhead in
every case.
A prototype is realized, based on the Linux operating
system and ethernet hardware. Measurements in this
prototype confirm the validity of the simulation and its
parameters.

Conclusion

This paper describes a new type of real-time network.
Unlike other token-based networks RT-net uses a
preemptive EDF scheduler to calculate the route of the
token and thus the priorities of network communications.
The network is based on ethernet hardware and ethernet
protocols. Because the token mechanism prevents
collisions to occur, the network becomes predictable and
suitable for hard real-time purposes. Preemptive EDF
scheduling enables a 100 percent utilization of the network.
Simulations show, confirmed by a prototype, that average
overhead per stream is around 0.5 percent of the total
network bandwidth. Currently, work is in progress to port
RT-net to IEEE1394 (Firewire). Simulation is almost ready
and prototype building starts shortly.

References

[HAVI] Home Audio and Video Interoperability web site: http://
www.havi.org

[JINI] JINI homepage: http://www.jini.org or http://
www.sun.com/jini

[UPNP UPnP homepage: http://www.upnp.org
[SEVCIK] K.C. Sevcik and M.J. Johnson: "Cycle Time Properties 

of the FDDI Token Ring Protocol", IEEE Transactions on 
Software Engineering, SE-13(3):376-385, March 1987

[MALCOLM] N. Malcolm and W. Zhao: "The Timed Token 
Protocol for Real-Time Communications", IEEE Computers, 
10(1):35-41, January 1994

[BOSCH]H.P.G. Bosch: "Mixed-Media File Systems", Ph.D 
thesis, University of Twente, ISDN 90-365-1277-8, 1999

[IEEE1394] IEEE1394 web site: http://www.1394ta.org
[IEEE802] Carrier sense multiple access with dollission 

detections (CSMA/CD) access method and physical layer 
specifications, ISO/IEC 8802-3 (4th edition), IEEE, 1993

[RETHER] RETHER homepage: http://www.ecsl.cs.sunysb.edu/
rether.html

 [BUTTAZZO] G.C. Buttazzo: "Hard real-time computing 
systems", Kluwer Academic Publishers, ISDN 0-7923-9994-3, 
1997

[OMNET] OMNet++ homepage: http://www.hit.bme.hu/phd/
vargaa/omnetpp.htm

Stream 1: Period = 1/15 Bandwidth = 0.19 

0
0.01
0.02
0.03
0.04
0.05
0.06

6.2 6.22 6.24 6.26 6.28 6.3

 
Stream 2: Period = 1/18 Bandwidth = 0.17 

0
0.01
0.02
0.03
0.04
0.05
0.06

6.2 6.22 6.24 6.26 6.28 6.3

 
Stream 4: Period = 1/30 Bandwidth = 0.16 

0
0.01
0.02
0.03

0.04
0.05
0.06

6.2 6.22 6.24 6.26 6.28 6.3

 

Figure 1: Example simulation output 


