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Abstract

This paper presents the jukebox early quantum scheduler (JEQS). JEQS
is a periodic jukebox scheduler for a Video-on-Demand system. JEQS uses
the jukebox robots in a cyclic way and the time is divided in constant units
called quanta. A quantum is the maximum time needed to unload and load
all the drives. An RSM is loaded in a drive for a fixed period of time, corre-
sponding to the time needed to switch the media on the other drives. During
this time the drive can read data from it. JEQS is based on the scheduling
theory on early quantum tasks (EQT). An early quantum task executes its
first instance in the next quantum after its arrival and the rest of the instances
are scheduled in a normal periodic way with the release time immediately
after the first execution.

Although JEQS is an efficient periodic scheduler, that can guarantee the
execution of most tasks in the next cycle after the requests arrive, we show
that using JEQS results in much longer response times than using aperiodic
schedulers. Furthermore, we show that the bad performance of JEQS is in-
trinsic to any periodic jukebox scheduler. The only advantage of using a peri-
odic scheduler is that the scheduling algorithms are less complex. However,
the simplicity of the algorithms clearly does not outweigh the unacceptably
long response times.

1 Introduction

This paper presents the jukebox early quantum scheduler (JEQS), a jukebox sched-
uler for a Video-on-Demand (VoD) system. JEQS schedules the jukebox resources
in a periodic way using early quantum tasks. It guarantees that the requested data
is promoted from tertiary-storage to secondary-storage in time.

A jukebox is a large tertiary storage device whose removable storage media
(RSM)—e.g. CD-ROM, DVD-ROM, magneto-optical disk, tape—are loaded and
unloaded from one or more drives by one or more robots. A jukebox can store
large amounts of data in a cost-effective way, which makes it eminently suitable for
applications that handle large amounts of continuous-media files, large databases
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Figure 1: Use of the resources in a cyclic way.

and backups. In this paper we focus on the use of jukeboxes to provide storage for
a Video-on-Demand system.

In order to use a jukebox effectively it is important to schedule the jukebox
resources. On the one hand, a jukebox is not a random-access device: the RSM
switching times are in the order of seconds or tens of seconds, which implies that
multiplexing between two files stored in different RSM is many orders of mag-
nitude slower than doing the same in secondary storage. On the other hand, the
resources in the jukebox—robots, drives and RSM—are shared and require exclu-
sive use, which creates the potential for resource-contention problems.

JEQS uses the jukebox robots in a cyclic way and the time is divided in constant
units called quanta.1 A quantum Q is the maximum time needed to unload and load
all the drives. An RSM is loaded in a drive for a fixed period of time, corresponding
to the time needed to switch the media on the other drives. During this time the
drive can read data from it. Figure 1 shows the cycle for a jukebox with four drives
(D1, . . . ,D4) and one robot (R1).

A request is treated as a periodic task. The period of the task must guarantee
that enough data is available in the buffer for the user to consume the data at the
bandwidth specified in the request. The processing time of the task is always Q.
The period of the task is obtained from computing how often the buffers need to be
filled so that the user does not run out of data. The period depends on the bandwidth
required by the request and the bandwidth offered by the drive.

JEQS uses the scheduling theory on early quantum tasks (EQT) presented
in [13]. An early quantum task is a task whose first instance is executed in the
next quantum after its arrival and the rest of the instances are scheduled in a nor-
mal periodic way with the release time immediately after the first execution. The
role of the early quantum tasks is to serve incoming tasks as early as possible when

1In the rest of this paper we assume there is only one robot. In the case of multiple robots we use
a separate cycle for each robot and define which drives and RSM will be served by it.
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these tasks have a clear initialization phase, as pre-filling a buffer. An applica-
tion of EQTs is to guarantee the in-time filling of buffers in a continuous-media
file-system. In [13] we present such a system and discuss buffer administration
issues.

JEQS builds the schedules assuming the existence of buffers that need to be
filled in time for the user to access the data. However, if a drive is not 100%
utilized, the schedule for the drive will have idle times. The dispatcher uses these
idle times to fill the buffers of the active tasks earlier than scheduled. Thus, the data
of the requests can be read in fewer instances than initially computed. This allows
the tasks to leave the scheduler earlier, thus increasing the bandwidth available on
the drive schedules for future requests. The dispatcher reads the data as soon as
possible, whenever there is enough bandwidth available in the jukebox.

The goal of developing JEQS was to be able to compare Promote-IT [16], our
aperiodic jukebox scheduler, with a periodic scheduler. To our best knowledge,
JEQS is the only correct periodic jukebox scheduler. The other periodic jukebox
schedulers proposed in the literature do not deal with the resource-contention prob-
lem correctly (see Section 2). Thus, they cannot guarantee that the deadlines are
always met. Although JEQS performs worse than Promote-IT, because it does
not use the jukebox resources efficiently, it has the advantage that it uses a very
simple scheduling algorithm. In Section 8 we show that the comparatively bad
performance of JEQS is intrinsic to any periodic jukebox scheduler.

The rest of this paper is organized as follows. Section 2 discusses related work.
Section 3 gives an overview of the system. Section 4 discusses some issues about
the jukebox hardware. Section 5 provides a formal description of the scheduling
problem. Sections 6 and 7 explain how the schedules are built and how the tasks are
dispatched, respectively. Section 8 compares the performance of JEQS, Promote-
IT and a First-Come-First-Serve scheduler. Finally, Section 9 concludes the paper.

2 Related Work

In the framework of our research on jukebox scheduling algorithms, we also de-
veloped Promote-IT [16], an aperiodic scheduler for a multimedia hierarchical
archive. Promote-IT can serve complex requests for the real-time delivery of any
combination of media files it stores. A request can consist of multiple streams and
non-streamed data that are synchronized sequentially or concurrently in arbitrary
patterns. In Promote-IT the scheduling problem is modeled as a flexible flow shop
with three stages, one for loading, one for reading and one for unloading. Promote-
IT builds near-optimal schedules using a heuristic algorithm, because finding an
optimal solution is an NP-hard problem. Promote-IT uses the jukebox resources in
a more efficient way than JEQS and, thus, provides shorter response times. How-
ever, the scheduling algorithm of Promote-IT is far more complicated than the one
used by JEQS.
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Lau et al. [14] present an aperiodic scheduler for VoD systems, which can use
two scheduling strategies: aggressive and conservative. When using the aggressive
strategy each job is scheduled and dispatched as early as possible, while when
using the conservative strategy each job is scheduled and dispatched as late as
possible. In [16] we present a comparison between Promote-IT and Lau’s strategies
and show that Promote-IT performs considerably better. As JEQS, Lau’s strategies
couple the unload and load of an RSM. Performing the unload and the load together
as one switch operation simplifies the scheduling problem, but considerably affects
the performance, because the drives stay loaded even when they are idle.

Chan et al. [5] stage a movie completely in secondary storage before it is dis-
played to the user, because their goal is to provide interactive VoD services. The
movies are staged First-Come-First-Serve (FCFS), which in general provides bad
response times. However, as we show in Section 8 the response times of FCFS,
are in many cases better than that of a periodic scheduler. Chervenak et al. [7] also
propose to stage a movie completely in secondary storage or to stream the movie
directly from the jukebox drives to the user [6]. This last approach makes even
worse use of the jukebox resources, because the bandwidth offered by the drives is
in general much higher than the bandwidth requested by the users.

We now discuss briefly other approaches that, although they are interesting, do
not deal with the RSM contention problem, which means that they cannot guar-
antee that an RSM is not assigned to two different drives during the same time
period. Therefore, these schedulers cannot be used for jukeboxes with multiple
drives and are not suitable to be used with most commercial big jukeboxes, which
have multiple drives. Lau et al. [15] propose two algorithms, the round-robin and
the least-slack algorithm, which break up the requests into time-slices and try to
build a schedule with the time-slices of the different requests. Golubchik et al. [8]
propose a periodic scheduler called Rounds. Cha et al. [4] use a jukebox sched-
uler based on a periodic EDF scheduler, which additionally does not deal with the
robot-contention problem.

At first glance the least-slack algorithm looks similar to the scheduler presented
in this paper. However, the least-slack algorithm does not use periodic scheduling
theory to give guarantees about the schedulability of the request. Instead, it trans-
forms the problem into an aperiodic scheduling problem where instances of the
same request have to be scheduled separately. The scheduler does not determine
a priori how the shared robot is used. It solves the robot-contention problem by
incorporating into the system utilization the worst-case robot-contention scenario,
which is having to wait for the robot to finish moves on all the other drives. This
may result in poor utilization of the jukebox resources. The biggest disadvantage
of the least-slack algorithm is that it does not deal with RSM contention, thus, it
may occur that the two tasks that need to read data from the same RSM are as-
signed to different drives simultaneously. Executing such a schedule will either
lead to missed deadlines or to a system crash.

Prabhakar et al. [19] and Triantafillou et al. [20] schedule requests without
real-time deadlines in order to minimize the mean response time. The conclusion
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Figure 2: Flow of data from the hardware to the end users.

of their work is that as much data as possible should be read from an RSM when the
RSM is loaded in the drive. Hillyer et al. [10, 11, 12] compare different scheduling
algorithms for retrieving data from a magnetic tape without real-time requirements.

3 System Overview

The goal of our Video-on-Demand system is to provide fast and timely delivery of
video and audio to users distributed in a local area network. The user can request
any file or part of a file stored in the jukebox to be consumed with any desired
bandwidth, as long as the bandwidth is less than the bandwidth offered by a drive
in the jukebox. The data is not necessarily restricted only to video, it can also be
music.

Figure 2 shows the flow of data from the jukebox to the end users. We must
guarantee that the data is promoted from one storage level to the next in time. JEQS
guarantees that the data is promoted from tertiary storage to secondary storage in
time. In turn Clockwise [3] provides real-time access to data stored in secondary
storage, which is used as cache, and finally RTnet [9] provides real-time guaran-
tees for the use of a local area network. The VoD system is a special case of the
hierarchical multimedia archive (HMA) presented in [16]. The VoD system can
handle only requests with one request unit.

Once the system accepts and confirms a request, it is committed to provide the
service requested by the user. The confirmation includes the starting time assigned
to the request. The user can start consuming the data at the starting time, with the
system’s guarantee that the flow of data will not be interrupted. The request and
the confirmation are the contract between the user and the system.

We define as response time the time between the arrival of the request and the
starting time assigned to the request. The confirmation time is the time between the
arrival of the request and the time at which the user gets a confirmation. We denote
a request as uk, the starting time of the request as stk, and the response time as rti.

The main goal of the jukebox scheduler is to guarantee that the data is buffered
in secondary storage by the time applications need it and guarantee uninterrupted
access to the data. Beyond this, the scheduler tries to minimize the number of
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Figure 3: Architecture of the jukebox scheduler.

rejected requests, minimize the response time, maximize the number of simultane-
ous users, and minimize the confirmation time. The scheduling problem to solve is
NP-hard. Therefore, it is not possible to find an optimal solution on-line.

Figure 3 shows the architecture of the jukebox scheduler. The cache manager
filters out the requests for data that is already in the cache or scheduled for staging.
The schedule builder schedules the requests on-line, re-computing the schedule
every time a request arrives. It generates a new schedule to replace the currently
active schedule. The dispatcher uses the active schedule to send commands to the
jukebox controller, which move RSM and stage data into secondary storage.

The schedule builder guarantees that including the new request does not lead
to missed deadlines and the dispatcher guarantees that the commands are sent to
the controller in time. The dispatcher may modify the schedules as long as no task
in the schedule is delayed and the sequence and resource constraints are respected.

The schedule builder of JEQS uses a variant of EDF (earliest deadline first) [18],
which we call Quantum Earliest Deadline First (QEDF), to determine if a new task
can be accepted. The feasibility analysis is simple and fast. In turn the dispatcher
guarantees that all the tasks meet the deadlines, by dispatching the instances of the
tasks in an earliest deadline first (EDF) way. When the cycle of a drive begins,
the dispatcher determines all the tasks which are ready to execute on the drive. It
chooses from those the task with the smallest relative deadline, following the EDF
principle, and executes it.

The dispatcher of JEQS uses the idle times in the schedule to fill the cache
of the active tasks. Thus, the data of the requests can be read in fewer instances
than initially computed. This allows the tasks to leave the scheduler earlier, so
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Figure 4: Jukebox architecture.

increasing the bandwidth available on the drive schedules for future requests. JEQS
reads the data as soon as possible, whenever there is enough bandwidth available
in the jukebox.

Caching is a key mechanism to improve the performance of a VoD system. On
the one hand we need to keep in the cache a video during the duration of a task.
On the other hand we need to store the popular videos in secondary storage, so that
they do not need to be promoted from tertiary storage every time they are requested.
The chances that a small set of videos is requested frequently are high, because the
access pattern in VoD systems is in general very skewed, following a Zipf-like
distribution [6]. Therefore, if the popularity of a video is high, the system will
frequently receive requests for it. Thus, we achieve the goal of keeping the popular
videos in cache by using a simple least recently used (LRU) cache administration
policy.

4 Hardware Model

Tertiary-storage jukeboxes are composed of the following hardware: m drives to
access the data in the RSM, s shelves where the RSM are kept and r robots to move
the RSM from the shelves to the drives and vice versa. JEQS requires that all drives
and RSM are identical. We assume optical or magneto-optical jukeboxes, because
they provide lower and more predictable switching times that tape jukeboxes.

In big jukeboxes the number of shelves is at least two orders of magnitude
larger than the number of drives and the number of robots. Our jukebox, for ex-
ample, has 720 shelves, 4 drives and 1 robot. Jukeboxes are available for different
types of RSM, for example CD-ROM, DVD-ROM, magnetic tape or magneto-op-
tical disk. Figure 4 shows the architecture of a generic jukebox with four drives
and one robot. The data from the drives can be transferred directly to secondary
storage through a high-bandwidth connection.
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Figure 5: Different optical drive technology. The graphics show the transfer speed
as a function of the track read.

We use a model of the hardware to predict the time that the system will need
for operations on robots and drives. We have validated the model against our actual
hardware and use it both for constructing the schedules and as a simulator in our
experiments. In [17] we present the complete hardware model. Here we present
some the characteristics of jukebox technology that help the better understanding
of JEQS.

The time it takes to load and unload a drive depends on different factors: open-
ing and closing time of the drive, spin-up/-down time, and the distance between the
drive and the shelf where the RSM is kept.

To compute the time to read data we need to take into account two components:
the transfer time and the access time. Except for drives using CLV technology, the
transfer time varies considerably when reading data starting at different offsets.
Figure 5 shows the transfer speed as a function of the offset for different optical
technologies. The hardware model provides the function smin

trans f er(t) that computes
the worst-case amount of data that can be transferred in time t. The worst case is
determined by reading data from the inner tracks starting at track 0. The bound
provided by this function will be very far from the real value in CAV drives. The
access time also depends the offset of the data to read, but the difference is not as
big as with the transfer time. So the upper bound provided by the function tmax

access is
not very far from the real time.
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5 Scheduling Problem

This section presents the scheduling problem using a periodic quantum model.
The robot is used in a cyclic way. The robot first unloads drive 1 and loads it with
another RSM. It then does the same for drive 2, and so on until all drives have been
served. It then starts again its cycle on drive 1. The jukebox has m identical drives.

We define a quantum Q as the time needed to complete a cycle:

Q = m (tmax
load + tmax

unload) (1)

Using quantum tasks [2] has the advantage that although the tasks are non-
preemptable, they can be treated as preemptable during the feasibility analysis.
The only condition is that release times of the tasks scheduled on drive i always
coincide with the beginning of a cycle for drive i. We can guarantee that the release
times of the tasks always fall at the beginning of a cycle, if the release time of the
first instance is at the beginning of a cycle, because the period of the tasks are
multiples of Q. Therefore, a task which is executing in a drive never needs to be
preempted.

An RSM is loaded in a drive for a fixed period of time. During this time the
drive can read data from it. The model assumes that all drives are identical, so
the time for reading data is the proportion of the quantum needed to switch the
media on the other drives ( m−1

m Q). During the time assigned to read data, the drive
must first access the data and then transfer it. Given that the drive cannot predict
the offset of the data to read, it uses the worst-case access time. Therefore, the
remaining time for transferring data TT is:

TT =
m − 1

m
Q − tmax

access (2)

Any periodic model either needs to impose restrictions on the way the robot
is used or has to take into account the worst-case robot-contention time in the
execution time of the tasks. The first approach is the one used by Golubchik et al.
[8] in their algorithm Rounds and in the periodic quantum model we present here.
The second approach is used by Lau et al. [15] in the time-slice algorithm. The
worst-case robot-contention time is m−1

m Q, which is the time needed to perform a
switch in all the other drives. Furthermore, a periodic model needs to couple the
unload and the load. In the case of a cyclic robot utilization the coupling is natural
to the cycle. In the case of the worst-case robot-contention time, if the load and
unload are not coupled, then the robot-contention time has to be taken into account
twice, once before the load and once before the unload, which should result in
adding another m−1

m Q to the execution time.
A shortcoming of this model (and any other periodic model) is that it needs to

reserve the worst-case execution time of the operations. On the one hand it uses the
maximum load and unload time to compute the quantum, because it must guarantee
that all combinations of drives and shelves are schedulable. If the switch finishes
earlier, the robot waits until the time of the worst-case to start unloading the next
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drive. On the other hand it uses the minimum amount of data which can be read
during a quantum, even if the amount of data that can be read in a quantum varies.
In different instances of the task the data is read starting at a different offset. We
define B to be the minimum amount of data that can be transferred in time TT . We
compute B using a function smin

trans f er that computes the amount of data that can be
transferred in time TT in the worst-case scenario.

B = smin
trans f er(TT ) (3)

A request uk has the following parameters: mk, ok, sk and bk that indicate the
RSM where the data is stored, the offset in the RSM, the size of the data and the
bandwidth, respectively. We denote the starting time assigned to the request as stk

A request is treated as a periodic task τi. The period of the task must guarantee
that enough data is available in the buffer for the user to consume the data at the
bandwidth specified in the request. The processing time of the task Ci is always Q.
The period of the task Ti is obtained from computing how often the buffers need
to be filled so that the user does not run out of data. The period depends on the
bandwidth required by the request and the bandwidth offered by the drive. Without
loss of generality we can assume that the data is consumed with a constant bit rate,
because the buffer size is large. Anastasiadis et al. [1] and Bosch [3] show that a
variable bit-rate stream can be treated as a constant bit-rate stream when the buffer
size is large enough.

This model creates as output a set Γ = {τ1, . . . , τn} of periodic tasks to schedule.
Each task τi needs to be executed only a finite number of times. We compute the
number of instances required by a request as dttrans f er(oi, si)/TTe. As the number
of instances of each task is finite, there is no real need to use a periodic scheduler
to build schedules for this model. An aperiodic schedule can also be used. We use
a periodic scheduler, because it allows to use simple computations to decide if a
task set is feasible.

The parameters of a task to schedule τi are the following:

Execution time (Ci) The execution time is always Q.

Period (Ti) The period of the task is always a multiple of Q. We compute the
period of the task as:

Ti = b
B

bi QcQ

Shared resources (ρi) Indicates the RSM on which the data of the request is stored.
The RSM is used as a shared resource, so that tasks using the same RSM are
not assigned to different drives simultaneously. If the task is being executed
in a drive it also contains the drive Dj in which it is being executed, to guar-
antee that it is not assigned to another drive.

Next release time (ri) Indicates the release time of the next instance of the task.
If ri < t0, where t0 is the present time, then the last instance of the task
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has not yet been executed. Otherwise, the last instance has already been
executed and the release time corresponds to the next instance of the task.
These parameters are obtained from the active schedule, which maintains a
history of the executed tasks.

Remaining instances (RI i) Indicates the number of remaining instances for the
task. For the correct functioning of the scheduler, once the last instance was
executed for the last time, the task remains in Γ until the deadline of the last
instance. Only then can the bandwidth utilized by τi be utilized by another
task.

6 Schedule Builder

The schedule builder of JEQS uses a simple and fast feasibility analysis. The
scheduler builds a separate schedule for each drive. When a new request uk arrives
the scheduler tries to include it in the schedule of one of the drives. The scheduler
first tries to include the task as an early quantum task (EQT) in the schedule of one
of the drives. An early quantum task is a task whose first instance is executed in the
next cycle of a drive and the rest of the instances are scheduled in a normal periodic
way with the release time immediately after the first execution. If the request can
be incorporated as an EQT on drive i, then the first buffer will be filled at the end
of the next cycle of drive i. At that moment the user may start consuming the data.
If the task is scheduled on drive i without using an EQT, then the starting time is at
the end of the first instance of the task. Thus, the starting time of the request stk is
the starting time of the next cycle of drive i, plus the period of the task Tk.

The scheduler guarantees that an RSM never needs to be loaded in different
drives, by using the same drive to process all the tasks involving the same RSM.
When a task is scheduled for the first time it is assigned a drive. All the instances of
the task will be executed on the same drive. The scheduler distinguishes a new task
from the others, because ρk will not indicate the drive to which the task is assigned.

As we have explained in the previous section, we can treat the tasks as preempt-
able. Therefore, we can use a simple variation of EDF, called QEDF, to determine
if the task set is schedulable. EDF has the advantage that it is optimal and very sim-
ple to compute. These properties also hold for QEDF, because QEDF is a special
case of EDF where all tasks have the same execution time Ci = Q. Furthermore,
using quantum tasks has the advantage that under certain circumstances we can fill
the first buffer of a stream and allow an incoming task to start executing as soon as
possible.

6.1 Scheduling Algorithm

The algorithm assumes that the tasks are normal periodic tasks that run indefinitely,
as is the case in classical real-time scheduling theory. It does not take into account
that the number of instances of each task is limited. Instead, it waits until a task
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finishes its execution and the last instance reaches the deadline, to remove the task
from the task set and consider the bandwidth used by the task available.

Using this problem simplification has the advantage that determining if a re-
quest is schedulable is extremely simple. However, the scheduler is unable to ef-
ficiently schedule requests with starting times far into the future. The scheduler is
only able to decide about the schedulability of a request at the starting time of the
next cycle of each drive. Another problem is that the scheduler cannot schedule re-
quests which need the bandwidth used at present by another task, even if that task
will finish its execution soon. This last restriction prevents in many cases to provide
an immediate confirmation to the user about the schedulability of the request.

The scheduler will try at most 2 m possible starting times to schedule an in-
coming request. It first tries to incorporate the task to start in the next cycle of a
drive, using an early quantum task. If this fails, the scheduler attempts to schedule
it as a normal quantum task. The scheduler tries the drives in the order in which
they will start the next cycle. The cycle of a drive begins with the unloading of the
RSM loaded in the drive, the loading of the new RSM and finally the reading of the
data. Let us assume that the next drive to start a cycle is drive 1 and that the cycle
of drive 1 will start in time tnext . The starting times that the scheduler will attempt
are:

∀ 1 ≤ i ≤ m | {tnext + (i − 1) (tmax
load + tmax

unload) + Q ∧

tnext + (i − 1) (tmax
load + tmax

unload) + Tk}

When transforming the requests into tasks, we assign to τk the release time
rk = stk − Tk. Thus, when using an EQT it seems that the first instance of τk is
waiting for execution. This allows to represent that the first instance of the task has
an ‘almost immediate’ deadline and the next instances behave normally.

Let us illustrate with an example how an incoming request uk is transformed
into the periodic task τk and the value of the candidate starting times for uk. The
request uk represents a two hour long video with a bandwidth of 6Mbps.2

Table 1 shows the relevant characteristics of the jukebox and the parameters of
the scheduling problem. We compute the period of the task τk as:

Tk = b
B

bk QcQ = b
808.2MB

0.75MBps 180s c 180s = 5 · 180s = 900s

Figure 6 shows the candidate starting times for uk . The candidate starting times,
shown as st1

k , . . . , st8
k , are tried in that order. Figure 7 shows the task τk when using

st1
k and st5

k . In both cases the drive to use is D1. The resulting task τ1
k is an early

quantum task and as such it requires that the drive executes the first instance of the
task τk,1 in the first cycle to meet the deadline of the first instance. When using st5

k
the drive can execute τk,1 in any of the first five cycles.

For each candidate starting time stj
k the scheduler executes the feasibility anal-

ysis for the set Γi ∪ τ
j
k, where τj

k is the task built by using stj
k and Γi is task set of

2We express the bandwidth requested by the users in Megabits per second (Mbps) and the band-
width offered by the drives in Megabytes per second (MBps).
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Type RSM Double-layered DVD-ROM
Drive technology CAV
m 4
tmax
load + tmax

unload 45 s
Q 180 s
Transfer Speed [5.11, 12.2] MBps
tmax
access 0.31 s

B 808.2 MB

Table 1: Jukebox specification and scheduling problem parameters for example.
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1 stk

5

stk
2 stk
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stk
3 stk
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Figure 6: Candidate starting times for uk.

the drive corresponding to stj
k. If the feasibility analysis succeeds, then the τj

k is
incorporated to Γi.

The first step of the feasibility analysis on the set Γi is to determine if there is
enough bandwidth available on drive i to schedule all the tasks. We do this using
the feasibility analysis for EDF as defined by Liu and Layland [18]. The task set
Γi is schedulable if:

U =
n∑

j=0

Cj

Tj
≤ 1 (4)

If there is enough bandwidth to schedule all the tasks and the release time
of the first request is before t0, the scheduler checks if it can use an EQT. The
condition to use an EQT is that enough time has passed since an EQT was used
last. The scheduler, thus, keeps a record of when an EQT was last incorporated
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Figure 7: Tasks resulting of scheduling the request with the first and fifth candidate
starting time. Top: Resulting task τ1

k when using st1
k . Bottom: Resulting task τ5

k
when using st5

k .

in each drive. If the last instance has occurred at least d 1
1−Ui e time units earlier,

then the new request can be accepted as an EQT. U i is the utilization of drive i
at the beginning of the next cycle of drive i, without considering the bandwidth
requirements of uk.

Condition 1 Given a quantum task set Γ with utilization U, a new task τk, tn the
time at which the new cycle begins and tl the last time a task was incorporated in
Γ as an early quantum task, τk may be incorporated in Γ as an early quantum task
if:

Tk ≥ d
1

1 − U
e ∧

tn ≥ tl + d
1

1 − U
e

The first condition is needed to guarantee that the task can be incorporated into the
set as a normal quantum task. It derives from the fact that the set is scheduled with
QEDF. The second condition guarantees that enough time has passed to accept the
task τk as an early quantum task.

There is a trade-off between optimizing the response time and the confirmation
time. The scheduler may accept a request as normal quantum task in order to
provide a fast confirmation time at the cost of a worse response time, or delay the
confirmation of the request until it can incorporate it to the schedule as an early
quantum task. The response time of a request accepted as normal quantum task
will never be better than waiting to schedule the request until it can be accepted as
an early quantum task.

A request uk can only be scheduled in drive Di if the utilization needed by
the request is smaller or equal to the remaining utilization available on the drive
(Tk ≥ d

1
1−Ui e). Therefore, if the request is accepted as a normal quantum task the

14



starting time of the request is at least (stk ≥ t0 + d 1
1−Ui e). As t0 ≥ tl, the minimum

possible starting time is waiting until it can be accepted as EQT. Additionally, the
utilization of the drive may decrease if one of the active tasks leaves the system, in
which case waiting to schedule the request may be even more profitable. Therefore,
if increasing the confirmation time is not a problem, the scheduler may only try to
schedule the requests as early quantum tasks. If the request cannot be incorporated
as early quantum task it is placed in the queue of requests awaiting scheduling until
a drive can accept the request as EQT.

However, when the load of the system increases and requests arrive with a
shorter inter-arrival time than the time until an EQT task can be incorporated into
the system, the performance of the scheduler that only incorporates tasks as EQT
quickly degrades. The reason for this is that the queue of requests awaiting schedul-
ing grows very fast, because whenever a request is scheduled the time to wait until
the next request can be accepted as EQT is set further into the future. Thus, wait-
ing to accept all requests as EQT is only profitable if the length of the queue is
in average 1 and this is only possible when the system load is low. Incorporating
some requests as normal quantum tasks alleviates the pressure on the scheduler. In
a sense the requests that are ‘unlucky’ to arrive at a time when the scheduler cannot
accept a request as EQT, pay the cost of an overall better scheduler performance
by being incorporated as normal quantum tasks.

In Section 8 we compare the performance of both approaches and show the
point at which using normal quantum tasks is more beneficial than using only
EQTs.

7 Dispatcher

At the beginning of a cycle for drive i the dispatcher decides what must be executed
during that cycle. The dispatcher uses the EDF rule to choose the task with the
earliest deadline among the tasks with an instance awaiting execution. A task τ j

has an instance awaiting execution if the release time of the task is earlier than the
present time (rj ≤ t0). If there is no task with an instance awaiting execution, then
according to the EDF rule, the next cycle of the drive would be idle, however the
dispatcher uses the cycle to fill up the buffer. In this way, the dispatcher dispatches
some instances early to be able to remove tasks from the scheduler as soon as
possible and, so, make bandwidth available for new tasks.

The dispatcher uses the following rule to decide what buffer to fill. It first tries
to go on reading data of the same task that was active in the drive, unless all the
data of the task has been already buffered. If all the data corresponding to the task
active in the drive has been read, but there is another task for the same RSM, it
reads the data of this other task. If the drive can go on reading data from the same
RSM, the RSM loaded in the drive does not need to be unloaded, and the next Q
units of time can be fully utilized for reading data. If no data can be read from
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Arrival
(sec) ID

Offset
(MB)

Size
(MB)

Bandwidth
(Mbps)

Period
(quanta)

24 1 2 5000 5 7
108 2 1500 3000 6 5
112 3 500 3272 9 3
137 4 2 8192 10 3
238 5 2000 657 1.8 19
300 6 4000 182 1.2 29
423 7 2 7200 5 7
460 8 100 1300 2.4 14
520 9 500 2500 3 11
546 10 750 3000 10 3
681 11 600 4000 3.8 9
865 12 10 8000 10 3
966 13 5000 100 0.125 287

1098 14 2 8000 15 2
1181 15 10 7000 15 2
1456 16 300 7200 10 3

Table 2: Example of requests which arrived at the system.

the RSM, it loads the RSM corresponding to another task. Only if no task has got
pending instances, the drive is left idle.

The dispatcher does not alter the functioning of the QEDF schedule. It only
uses idle cycles when it has decided that those cycles should go unused otherwise.

The dispatcher also deals efficiently with situations in which a task has got a
period of 1. The RSM is kept constantly in the drive until all the data has been
read and only then unloaded. In such a case, the improvement in the bandwidth
utilization of the drive is considerable compared to the original schedule.

The dispatcher does not know in advance the exact number of instances that
need to be used for each task, because when there are idle slots it can advance in
the execution of a task. If all the data of a task has been read once the deadline of
the last executed instance of the task is reached, no new instance is released and
the task is removed from the schedule.

7.1 Example

We illustrate with an example how the scheduler works. We use the same jukebox
specification shown in Table 1. Table 2 shows the requests that arrived at the system
since time 0. The data of each request is stored on different RSM (∀ i, j | m i , mj).
The table also shows the period of the corresponding task. We assume that before
these requests arrived, the system was idle.

Table 3 shows the starting time sti and response time rti of each task. The
response time is the starting time minus the arrival time. The table also shows
for each drive: the utilization (U i), the starting time of the next cycle (ti

n), and the
earliest possible time to accept an early quantum task (t i

l + d
1

1−Ui e). The last two
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Figure 8: Schedule for the tasks of the example. The blocks without text are idle
slots used for filling up the cache.

columns of the table show the maximum number of instances needed to read all the
data of the request (RI i) and the latest time by which all the data of the request will
be cached (dlast

i ). The exact time is the deadline of the last instance d last
i , which is

computed as dlast
i = (RIi − 1) Ti Q + sti. However, the dispatcher does not know in

advance the exact number of instances that need to be used for each task, because
when there are idle slots it can advance in the execution of a task. Therefore, the
table provides an upper bound for both values.

At time 24 when r1 arrives at the scheduler, the next drive to begin its cycle is
D2 so τ1 is assigned to D2 and it can start immediately. All tasks except τ9 can be
incorporated as early quantum tasks. Note that if τ16 would have arrived earlier, it
would have been rejected, because there was not enough bandwidth in any drive
until time 1440 when τ3 left the system. Therefore, τ16 would not be schedulable
without using the early dispatcher.

Figure 8 shows the first part of the schedule. The top line indicates the arrival
time of the requests. The up arrows in the schedule indicate when an early quantum
task begins. The blocks without tags represent work that has been dispatched early.

8 Performance Evaluation

This section presents a comparison between aperiodic scheduling and periodic
scheduling. Aperiodic scheduling is represented by Promote-IT, while periodic
scheduling is represented by JEQS. We analyze the performance of JEQS, both
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Time ID D1 D2 D3 D4 sti rti Drive EQT? RIi dlast
i

24 1
0
180
180

0
45
45

0
90
90

0
135
135

225 201 D2 YES ≤ 5 ≤ 5265

108 2
0
180
180

0.14
225
405

0
270
90

0
135
135

315 207 D4 YES ≤ 3 ≤ 2115

112 3
0
180
180

0.14
225
405

0
270
90

0.2
135
495

360 248 D1 YES ≤ 3 ≤ 1440

137 4
0.33
180
360

0.14
225
405

0
270
90

0.2
315
495

450 313 D3 YES ≤ 7 ≤ 3690

238 5
0.33
360
360

0.14
405
405

0.33
270
630

0.2
315
495

540 302 D1 YES 1 540

300 6
0.38
360
720

0.14
405
405

0.33
450
630

0.2
315
495

585 285 D2 YES 1 585

423 7
0.38
360
720

0.17
585
765

0.33
450
630

0.2
495
495

675 252 D4 YES ≤ 6 ≤ 6975

460 8
0.38
540
720

0.17
585
765

0.33
630
630

0.34
495
855

810 350 D3 YES 2 3330

520 9
0.38
540
720

0.17
585
765

0.40
630
990

0.34
675
855

2520 2000 D1 NO ≤ 3 ≤ 6480

546 10
0.42
720
720

0.17
585
765

0.40
630
990

0.34
675
855

900 354 D1 YES ≤ 3 ≤ 1980

681 11
0.75
720
1620

0.14
765
765

0.40
810
990

0.34
855
855

945 264 D2 YES ≤ 4 ≤ 5805

865 12
0.75
900
1620

0.25
945
1125

0.40
990
990

0.34
855
855

1035 170 D4 YES ≤ 7 ≤ 4275

966 13
0.75
1080
1620

0.25
1125
1125

0.40
990
990

0.73
1035
1575

1170 204 D3 YES 1 1170

1098 14
0.75
1260
1620

0.25
1125
1125

0.40
1170
1350

0.73
1215
1575

1305 207 D2 YES ≤ 7 ≤ 3465

1181 15
0.75
1260
1620

0.75
1305
2025

0.40
1350
1350

0.73
1215
1575

1350 169 D3 YES ≤ 6 ≤ 3150

1456 16
0.42
1620
1080

0.75
1485
2025

0.90
1530
3330

0.73
1575
1575

1800 344 D1 YES ≤ 6 ≤ 4500

Table 3: State of the scheduler at the arrival times and resulting starting time and
response time when using the cached early quantum scheduler. The values shown
for each drive are the utilization U i, the starting time of the next cycle ti

n and the
earliest time at which an EQT can be accepted t i

l + d
1

1−Ui e.
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using normal quantum tasks and scheduling only EQTs. We show also the perfor-
mance of the FCFS scheduler proposed by Chan [5].

We show that using periodic scheduling is a bad technique for scheduling a
jukebox, because even the FCFS scheduler which is extremely simple—load the
RSM, read all the data, and unload the RSM—behaves better than JEQS in most
cases. We argue that the bad performance of JEQS is not a characteristic of JEQS,
but is intrinsic to any periodic jukebox scheduler. As discussed in Section 5, a
periodic scheduler either needs to use the robot in a cyclic way, or take into account
the worst-case robot-contention time in the execution time of the tasks. Therefore,
when using a periodic scheduler the best-case starting time for a request that does
not produce a cache-hit is Q, even if the system load is very low and all drives
are idle. In the same scenario the starting time for Promote-IT is in most cases
just the time to load the RSM in the drive and read the data of the first request
unit. Therefore, in a situation with low system load, the best-case response time
for a periodic scheduler is around m−1

m Q worse than the general case for Promote-
IT. The difference gets even worse for the periodic schedulers as the system load
increases, because the periodic scheduler wastes drive bandwidth with unnecessary
switches.

The request set consists of 1000 requests that follow a Zipf distribution. Each
request is for one full video file. The bandwidth of the videos is uniformly dis-
tributed in the range [1, 8]Mbps. The duration of the videos is uniformly distributed
in the range from 15 minutes to 2.5 hours. The data in the jukebox is stored in
double-layered DVDs. Each video is stored completely in one disc. However, one
disc may store multiple videos.

We show simulation results for two jukebox architectures. In both cases the
jukebox is a smartDAX (for hardware model see [17]) with four identical DVD
drives. The load time is in the range [21.8, 24.912]s and the unload time is in the
range [14.326, 17.438]s. In the ‘CAV-jukebox’ the drives use CAV technology and
the transfer speed is in the range [7.96, 20.53]MBps. In the ‘CLV-jukebox’ the
drives use CLV technology and the transfer speed is 7.96MBps.

The size of the cache is 10% of the jukebox capacity. The average cache-hit
rate is 63%. The cache-hit rate is nearly the same, independently of the scheduler
used or the system load.

The graphics show simulations with different inter-arrival rates. The requests
arrive following a Poisson distribution. When using the CAV-jukebox the inter-
arrival rate is between 60 and 120 requests per hour, while when using the CLV-
jukebox it is between 5 and 60 requests per hour. The drives in the CLV-jukebox
are slower, therefore, the jukebox can serve only requests at a slower rate.

Figure 9 shows the response time of the different schedulers. Apart from the
mean response time, we also show the maximum response time for 90% of the
requests, and the maximum response time, to pinpoint the difference between the
version of JEQS that uses normal quantum tasks and the version that uses only
EQTs.
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In Figure 9 we can clearly see that the response time of Promote-IT is always
much shorter than the response time of JEQS. As the system load increases, the
performance of FCFS is also better than that of JEQS. When using the CAV-
jukebox the performance of JEQS is proportionally worse than when using the
CLV-jukebox, because the drives in the CAV-jukebox are faster. Therefore, when
using the CAV-jukebox more drive bandwidth is wasted with each switch.

Figure 9 also shows that when the system load is high, the performance of the
version of JEQS that only uses EQTs degrades very fast. Note that the plots of the
version of JEQS using only EQTs are not complete, because this version of JEQS
cannot cope with high loads. As the load passes a certain limit, the length of the
waiting queues grows so much that no new requests can be scheduled.

To compare the performance of the two versions of JEQS, it is useful to ana-
lyze the maximum response time. Figure 9(e) shows that the maximum response
time of JEQS is very high, but it is a somewhat exceptional case, because Fig-
ure 9(c) shows that the maximum response time for 90% of the requests is much
lower. The high maximum response time for JEQS comes from incorporating to
the schedule a normal quantum task with a long period. As we explained in Sec-
tion 6.1, scheduling normal quantum tasks is a trade-off to make the scheduler able
to cope with higher system loads. Figure 9(c) also shows that in 90% of the cases
scheduling normal quantum tasks results in a better response time than scheduling
only EQTs. Figure 10(a) clearly shows that scheduling only EQTs also results in
long confirmation times.

Figures 10(c) and 10(d) show that building periodic schedules needs less com-
putation than building aperiodic schedules. However, this fact is not directly re-
flected in the confirmation time, because Promote-IT and FCFS have shorter con-
firmation times than JEQS (see Figure 10(b)).

Figures 10(e) and 10(f) show that the robot utilization of JEQS is higher
than that of Promote-IT and FCFS. The high robot utilization originates from the
fact that multiple switches are performed for reading data from an RSM, while
Promote-IT and FCFS use the minimum amount of switches. The robot utiliza-
tion of ‘JEQS only EQTs’ is proportionally lower than that of JEQS as the load
increases, because ‘JEQS only EQTs’ accepts new requests at a lower rate.

9 Conclusions

We presented JEQS a jukebox scheduler for a Video-on-Demand system. JEQS
is a periodic scheduler that uses early quantum tasks to provide prompt service to
the incoming requests. The scheduler uses the jukebox robots in a cyclic way and
defines a quantum as the time to load and unload all drives. It solves the resource-
contention problem by treating the RSM as shared resources and assigning all tasks
for the same RSM to one drive.

The advantages of JEQS are its simplicity when compared to aperiodic sched-
ulers, and its correctness when compared to the other periodic jukebox schedulers.
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JEQS is the only periodic schedulers that deal with the resource-contention prob-
lem correctly. However, using periodic scheduling is a bad approach when schedul-
ing jukeboxes.
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Figure 9: Response time for Promote-IT, JEQS and FCFS for the CAV-jukebox
and the CLV-jukebox. The graphics are scaled for best resolution, thus the scales
are different.
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(d) Mean computing time. CLV-jukebox.

25
30
35
40
45
50
55
60
65
70
75

60 70 80 90 100 110 120

Pe
rc

en
ta

ge

System load (requests/hour)

JEQS
JEQS only EQTs
Promote-IT
FCFS

(e) Mean robot utilization. CAV-jukebox.
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(f) Mean robot utilization. CLV-jukebox.

Figure 10: Confirmation time, computing time, and mean robot utilization for
Promote-IT, JEQS and FCFS for the CAV-jukebox and the CLV-jukebox. The
graphics are scaled for best resolution, thus the scales are different.
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