Early Quantum Task Scheduling

P.G. Jansen, F. Hanssen, M. Lijding
Distributed and Embedded Systems group
Faculty of Computer Science, University of Twente
E-mail: {jansen,hanssen,lijding}@cs.utwente.nl

12th November 2002

Abstract

An Early Quantum Task (EQT) is a Quan-
tum EDF task that has shrunk its first pe-
riod into one quantum time slot. Its purpose
is to be executed as soon as possible, with-
out causing deadline overflow of other tasks.
We will derive the conditions under which
an EQT can be admitted and can have an
immediate start. The advantage of schedul-
ing EQTs is shown by its use in a buffered
multi-media server. The EQT is associated
with a multimedia stream and it will use its
first invocation to fill the buffer, such that a
client can start receiving data immediately’.

Keywords real time scheduling, admis-
sion control, continuous media server, buffer
management, jukebox server

1 Introduction

Early Quantum Scheduling is a real-time
scheduling method that solves the problem
of a too long waiting time for a task to enter
the system. This waiting time occurs after
the acknowledgement for the admission of a
task, and is due to the regular scheduling
rules. These rules normally determine that a

!This research is supported by the IBM Equinox
program.

task may execute when it has the highest pri-
ority. For instance, under Farliest Deadline
First (EDF) this is the task with the earli-
est deadline. By breaking the priority rules
temporarily the scheduler can speed up the
start of a task considerably.

Consider for instance a multimedia
client/server system, in which one or
more media servers send media streams
to consumers. Such a consumer may re-
quest a media stream and waits for the
acknowledgement of the admittance. After
the acknowledgement the server may then
schedule the admitted stream amongst all
the others, however the new stream has to
await its regular turn for the first filling of
its communication buffer. We can speed up
the start of such a stream, by filling this
buffer at the earliest time possible. This
paper describes the condition under which
such in-time buffer filling can be arranged,
without endangering the deadlines of all
other streams.

In the context of this paper we assume a
single processor in which all tasks are non-
preemptive and need a unit of computation
time, and are started and ended at integer-
time values. The computation units are
called synchronous quantum units or quanta.
The tasks are scheduled by EDF and we will
denote this type of scheduling as Quantum

EDF (QEDF). QEDF scheduling simplifies
the admission criteria of the newcomers to
a simple algorithm. If the tasks are used to
send or receive media, a task can be associ-
ated with a stream.

An FEarly Quantum Tasks (EQT) is de-
rived from a normal QEDF task, however it
executes its first invocation as soon as possi-
ble. We will illustrate the use of EQTs with
a multimedia client/server. The advantage
is a server cam start filling the buffer imme-
diately.

EQTs could be used in any quantumised
server. We use them in our jukebox multi-
media server [11].

The structure of the paper is as follows.
Section 2 refers to the related work. Sec-
tion 3 introduces QEDF, section 4 describes
EQTs and section 5 explains admission con-
trol of EQTs. Section 6 shows the use of
EQTs in a multimedia server, explains how
to avoid buffer over- and underflow. In sec-
tion 7 the conclusions are drawn.

2 Related work

An EQT is constructed from a normal QEDF
task in two steps. In the first step the QEDF
task is transformed to an intermediate form,
the Push In Task (PIT), and in the second
step the PIT is transformed to an EQT. The
PIT may execute its invocations always im-
mediately and does not have to await its
EDF turn. This PIT can be used as the
ideal aperiodic server that may execute an
aperiodic request immediately after having
respected the inter-arrival times of the re-
quests. It belongs to the class of dynamic
servers as presented in [6]. These servers
both work in the EDF domain of preempt-
able tasks and are called dynamic because
they use EDF which is considered to embody
a dynamic priority scheme. A PIT is close to

a quantum task version of the total bandwidth
server, or closer, to a quantum task version
of the improved total bandwidth server from
Spuri and Buttazzo [14, 15].

The total bandwidth server executes in a
preemptable EDF environment. It is a task
that serves aperiodic requests. When the
k™ aperiodic request arrives at time ¢t = 7y,
it receives a deadline dj = max(rg,dg_1) +
C/Us, where Cy, is the execution time of the
request and U; is the server utilisation. Af-
ter assignment of this deadline the request is
inserted into the “released queue” and sched-
uled as a normal EDF invocation.

The improved total bandwidth server shifts
the actual execution to the earliest possible
point in time, without endangering the dead-
lines of the other EDF tasks, thus giving the
best service possible to the server. A dis-
advantage is, however, that this operation
needs rather complex computation. We will
show that our PIT does not need to do any
computation and guarantees immediate exe-
cution without endangering the other dead-
lines. Furthermore we will exploit our PIT to
speed up the start of QEDF tasks or streams.

Quantum tasks have been proposed ear-
lier. Baruah et al. [3] introduced a the-
ory related to quantum tasks called Pfair
scheduling. The scheduling algorithm was
called PD and it can be used to sched-
ule tasks in a parallel environment. Under
Pfair conditions a uniform execution rate is
guaranteed by breaking tasks into quantum-
length sub-tasks. Each sub-task must be ex-
ecuted within a window of time slots, the
last of which must be the deadline. Ander-
son et al. [2] continued to work on this idea.
They developed fundamental properties in-
herent to Pfair scheduling and could simplify
the priority conditions of PD.

Buffered client/server systems are widely
used and certainly not new.
scheduling continuous media streams in-

However,

volves also the need to avoid buffer under- or
overflow. Korst et al. [9] compared a num-
ber of disk scheduling algorithms that can
be used in a multimedia server for sustain-
ing multiple variable-bit-rate (VBR) data
streams and paid attention to the buffer
under- and overflow. We assume a constant
bit rate for the streams. According to [1] and
[5] this is acceptable for variable bit rates
when buffering big chunks of data.

3 Early Quantum EDF tasks

A PIT is a promoted QEDF task, that ex-
ecutes its new invocations as soon as possi-
ble. We need a PIT as an intermediate step
to transform a QEDF task into a EQT. To
describe this transformation process we will
proceed as follows. First we introduce an
EDF task set I' and describe its well-known
properties. Then we rewrite these properties
to apply for QEDF tasks. Next we select
one of the tasks to become a PIT. Succes-
sively we show that this task can execute its
periodic invocations immediately after their
releases without endangering the deadlines of
the other tasks.

Given atask set I' = {7y, ..., 7,} of n tasks
with, for each 1 <i <mn:

7 = (D, T3, C;)

where

D;: the relative deadline. For quantum
tasks D; = T; is a positive integer value.

T;: the period, the duration between two
successive invocations.

C;: the maximum run-time 7; takes to com-
plete each invocation. For quantum
tasks C; = 1.

We order tasks by deadline with the short-

est deadline first. Quantum tasks are syn-

chronous, and events such as release, activa-
tion, finalisation (the end of an activation),

and deadline occur at integer times.

The utilisation, as defined by Liu and Lay-
land [12], determines the fraction of proces-
sor time spent in execution of a task set. It
is defined as:

Uv=> = (1)
. 1
=1
which can be rewritten for quantum tasks as:

U=3 7 @

We adapted Liu and Layland’s theorem to
quantum scheduling as follows:

Theorem 1 (QEDF feasibility (L&L))
Given a synchronous quantum task set I'
scheduled under QEDF. The set is feasible if
and only if:
U<1 (3)

Proof The original theorem holds for
preemptive EDF tasks and not for non-
preemptive tasks. The proof is based on
the fact that there is no difference between
a preemptive set of quantum tasks and a
non-preemptive set of tasks if release times
and deadlines are quantum units, expressed
as integer values. By construction, exactly
the same scheduling patterns occur under
preemption as well as under non-preemption
and therefore both schedules must be equiv-
alent, which concludes the proof of the the-
orem.

O

Our target is to speed up the introduction of
tasks. This will cost some of the free capacity
of the processor, which can be determined by
computing the difference between the proces-
sor capacity and the processor demand . The
processor demand function H(t), defined by

10 |

il 4 !

Figure 1: Capacity ¢ and demand H(t)

Baruah [4] and Spuri [13] is suited to this
purpose. H(t) describes the amount of load
that should be solved by the processor in a
time interval ¢ in order to meet all deadlines
under EDF.

=3 |0 e

i=1

For quantum tasks this can be rewritten to:

|t

=3 7] o)
Figure 1 shows the processor capacity line
under 45 degrees (load = t) and the pro-
cessor demand function H (t) for two QEDF
tasks 71 and 1 with period 3 and 4 respec-
tively. The task bars show the worst case
schedule of 71 and 7.

Baruah [4] and Spuri [13], and later also
Jeffay [8] rewrote the feasibility condition
U < 1 for the original Liu and Layland the-
orem to:

Theorem 2 (QEDF feasibility (B&S))

Given a synchronous quantum task set I'
scheduled under QEDEF. The set is feasible if
and only if:

VE:0<t:H(t)<t (6)

It is not needed to go until the infinitum in
order to verify this equation. There exist es-
timations for time lower-bounds? to conclude
the correctness of equation 6. If it is possible
to show the correctness until such a lower-
bound, then the correctness for all 0 < ¢ can
be concluded.

The difference between the processor ca-
pacity ¢t and the processor demand H(t) is
called slack. Slack can be interpreted as

2The Baruah bound or longest idle period (also
called busy period [8]) can both be used as lower-
bound

unused processor capacity. We define the
slack S(t) by:

S(t) =t — H(t) (7)

The same arguments as those for the proof
of theorem 1 can be used.

Note that H(t) reflects the processor de-
mand for any interval in time with length ¢
and for any phase (shifted positions) between
the EDF tasks. It is certainly not exclusively
related to one experiment in which the tasks
are all started simultaneously with a phase
0, as might be suggested by the task bars of
figure 1.

Slack space can be used for additional ac-
tivity and we will investigate the conditions
under which this space can be used. A larger
slack space allows for more successive new
tasks to be introduced earlier. In particular
we are interested in the greatest lower-bound
Siin of all slack values. We can use this S;n
for early introductions of tasks. S,,;, can be
determined by inspecting those values for ¢ at
which deadlines expire and at which H(t) is
changed. This can be verified by inspection
of equation 5. Consider for instance figure 1
where S, is determined for 7 and 7. The
graph shows the minimum slack line, run-
ning parallel to the processor capacity line.
Siin = 2 is found at t = 3 and at t = 4.

In order to find the minimal value of the
slack we have to inspect S(t) for all dead-
lines until some time upper-bound. We ex-
pect that it is possible to determine a suit-
able time upper-bound, but we will not go
into this procedure because of the computa-
tional costs. Instead we estimate the mini-
mum value of S(t) on the basis of the follow-
ing theorem:

Theorem 3 (QEDF slack)
Given a synchronous quantum task set I,
with hyper-period 7, scheduled under

QEDF, with a utilisation U < 1, processor
demand H(t) and slack S(t). Then

(Vt € [Tnin, T) : S(t) > (1 = U)t) A S
S(T)=(1-U)T (8)

Proof The proof has two parts. The first
part determines S(t) for t € [Tynin,7) and
the second part considers S(t) for t = 7.
First part:

Vie[1,7):

n

t—Z%:t(l—U)

=1

=

which follows from (1) the definition of H(t),
(2) the property of the floor operator on the
floating point values of the fraction ¢/T; since
t < 7, and (3) the definition of U. This
completes the first part.

The second part is similar to the first part.
Because 7 is the hyper-period 7 /T; € N.

S(T):T—H(T):T—Z{%J —

i=1 7"
T

T—;E:T(l—U)

which completes the second part.
O

The interpretation of this theorem is as fol-
lows. (1) If U < 1 then a slack S(t) >
(1 — U)t is available for intervals of length
t. (2) If U =1 then all the intervals have at
least a slack S(¢) > 0, which implies S(t) = 1
(because integer values are involved), except
for the case that all tasks have a deadline
at hyper-period intervals ¢ = 7. For such
an interval there is exactly one execution for
which S(t) must be 0.

15 | ‘

WO ,

10 | L7

Figure 2: ¢t and H (t) of T';

Example 1 Given the specification of a set
of QEDF tasks I'1 according to figure 2.

The utilisation U = 1, so I'; is feasible.
According to theorem 3 S,,;; > 0, hence
every execution has a slack of at least 1
quantum, except the last execution in a
hyper-period interval 7 = 12 at which
point all tasks have an expiring deadline.
74 is the task that executes just before the
hyper-period?.

|

On the basis of theorem 3 we can estimate
a slack lower-bound S.s with a simple ex-
pression instead of computing the greatest
lower-bound S,,,;, as stated in the following
corollary.

Corollary 1 (Slack estimation)

Given a feasible QEDEF set I with utilisa-
tion U < 1. Let T}, be the smallest period
of all tasks in T" and Sest = [(1 — U)Tonin |-

Sest 1s a lower-bound for all quantum slack
values in T'.

Proof From equation 7 and theorem 3 it
follows that:

Vt € [Tmm’ T] :
(1-— U)Tmm < (1 — U)t < S(t) =4
Sest = ((1 - U)Tmin—| < (S(tﬂ

since for all expiring deadlines in [T}in, 7|,
S(t) must be an integer value, hence we may
take the ceiling of (1 — U)T iy for the lower-
bound of all values of S(t), which completes
the proof.

U

3 Any other choice in case of deadline ties could
have been chosen. Note however that the choice in
case of ties should be deterministic.

Example 2 (73 and 7o of I'y)
Given the specification of a set of tasks as
shown in figure 1.

According to corollary 1 the estimated
minimum slack value is [(1 — U)Tmin] =
[(1—7/12)3] = [15/12] = 2, which is equal
to the real minimum value. Note that for
other cases this estimation might be smaller
than the minimum value.

4 Early Quantum Tasks

We will construct EQTSs in steps. In the first
step we transform a newly arrived and ad-
mitted QEDF task 7, to a PIT F(7,) by shift-
ing all executions of 7, to the first time slot
after release. In the second step we trans-
form F(r;) to an EQT E(F(r,;)) by split-
ting up F(7,) in a single invocation head
head(F'(ty)), and a tail tail(F(r;)), which
contains the rest of the invocations of F'(7,).
head(F'(7,)) is unchanged, but tail(F(ry)) is
transformed to a pure QEDF task, as if the
separated tail had been released immediately
after the head. Unchanged head and changed
tail constitute the newly formed E(F(7,)).

As an example, consider figure 3(a) where
73 is a normal QEDF task, in figure 3(b) it
has changed to F(73), and in figure 3(c) it
has further changed to the EQT E(F(73)).
Note that the tail of E(F(73)) is scheduled
according to EDF rules.

In case of deadline ties a deterministic
choice determines the order in which the
tasks are executed. A simple criterion such
lowest task index first will fit.

Theorem 4 (From QEDF task to PIT)
Given a feasible QEDF set I' with utilisa-
tion U < 1. Any QEDF 1, € I' can be pro-

(c) 73 is an Early Quantum Task (EQT)

Figure 3: Synchronous quantum tasks of I'y
scheduled by EDF

moted to PIT F(r,) without deadline over-
flow of any other task in I.

Proof First we prove that the executions
of 7, may be shifted to the left until the
first slot after its release under the condi-
tion U < 1 and secondly we prove the excep-
tional case for U = 1. Both parts are proved
by construction, which is illustrated in the
figures 3(a) and 3(b).

First part Denote release time, start
time and deadline for the j™ quantum in-
vocation of 7, by 73, s}, and dj respectively.

Call the quanta within invocation j
from ‘rg until ‘SZI' left-hand slots and those af-
ter sy until d} the right-hand slots.

We will now rotate all left-hand slots to
the right such that all executions except the
last one are shifted one place to the right.
The last one, containing sg, is moved to the
free falling first slot. None of the executions
in the rotated list has passed its deadline or
release time: for the executions shifted to
the right there is a slack time of at least 1
due to theorem 3, and the execution of the
PIT 7, has been inserted in the first slot,
immediately after its release time.

Furthermore, the right-hand sequence of
executions is not affected by this operation.
Consequently none of the executions in the
quanta from rg to dg did violate release times
or deadline requirements, while the load of 7,
is executed as early as possible. We can re-
peat construction and arguments for all exe-
cutions of 7, until we have constructed F'(7,)
which completes the proof of the first part.

Second part Here we consider the case
where U = 1. Denote the start of the last ex-
ecution before the hyper-period s/**, which
is the only execution with a slack 0 in a
hyper-period. There are two cases now: T;

is promoted to periodic PIT, or a different
task is promoted.

If 7; itself would be promoted, then the
last execution before the hyper-period of 7,
is part of the left-hand side. This side is ro-
tated and after the rotation this execution is
mapped on Tf‘”t, while the other quanta of
the left-hand side can be shifted to the right,
without violating any of the deadlines of the
other tasks, since they all have a slack of at
least 1.

If 7 itself is mot subject of promotion
to PIT, then the last execution Til‘”t before
the hyper-period, will always be part of the
right-hand side of invocations. Consequently
this quantum is left unaffected by any rota-
tion operation. This completes the construc-
tion of F'(7;) and completes the proof of the
second part and with it the proof of the the-
orem.

O

Example 3 (Task set I'y)

We have chosen to promote task 73 of the
earlier presented task set I'y in figure 2 to a
PIT. According to figure 3(b) the following
shifts of executions takes place:

00— 1, 1— 2, 20;
4 — 5, b— 6, 6«4
8 — 9, 9 — 10, 10 « §;

A PIT can be used as an aperiodic quan-
tum server, quite in the spirit of the dynamic
servers as presented in [6], with arrival inter-
vals of aperiodic events that are not smaller
than its period. It is in fact an improved to-
tal bandwidth server [14, 15] that can serve
aperiodic events. It is even better than the
improved total bandwidth server since no

computation is needed for the earliest release
possible.

Theorem 5 (From PIT to EQT)

Given a set of quantum tasks I' with util-
isation U < 1. One of its tasks can be pro-
moted to EQT without deadline overflow of
any other task in T'.

Proof Let 7, be the task that will be pro-
moted to EQT. We will proceed according to
the following steps.

(1) According to theorem 4 7, can be
transformed to PIT F(r,) without endanger-
ing any deadline in I.

(2) Next choose a head and tail such that
the number of invocations in the head is
1. Successively adapt the tail to a nor-
mal QEDF task while maintaining feasibility
with the following steps:

(2.a) Tail invocations tail(F(r,)) are part
of the PIT and consequently they can exe-
cute in the first slot immediately after their
release. Therefore their deadlines can be set
to 1.

(2.b) Release times of tail invocations can
be set T, — 1 earlier, that is just after the
deadline of the previous invocation, with-
out forcing any of the execution of the other
tasks to a different time slot.

(2.c) Step (2.a) and (2.b) do not influence
the feasibility. In this last step we make
use of aperiodic EDF optimality arguments
of Dertouzos [7]: “if there exists a feasible
schedule for a task set then EDF is able to
find it”. As a consequence we can adapt the
tail to a QEDF task while preserving fea-
sibility. This completes the construction of
E(F(14)) and completes the proof.

O

The construction from PIT to EQT is illus-
trated in figure 3(b) and 3(c), where 7, is
embodied by 3.

In the following section we introduce the
maximum bandwidth PIT. This task is not
really in the system but it is introduced in
order to estimate the time needed to regain
the slack or bandwidth that has been used
by an early invocation.

5 EQT admission control

In this section we will illustrate admission
control of EQTs. During the introduction
of an EQT slack space is consumed for the
early execution of the head. We will con-
sider the executions of the last two heads in
more detail and take a view as if these heads
were executed by a virtual PIT that uses all
remaining bandwidth (or utilisation) exclu-
sively for this purpose. From the minimum
period of the virtual PIT we can derive the
minimum inter-arrival interval of the heads
of the EQTs.

Let t, be the time at which the previous
EQT head of 7, has been executed and let
t, be the moment at which a new EQT of 7,
with period T, is requested. The utilisation
after introduction of 7, is U. The minimum
period T, of a virtual PIT, at which cost
the last head at ¢, as well as the new head ¢,
can be executed, is determined by the util-
isation Ty (U) = [1/(1 — U)]. Tuir(U) is
therefore a safe estimation for the shortest
inter-arrival time between two heads of suc-
cessive arrivals. For instance if U = 3/4 after
introduction of 7, hence T (U) = 4. There-
fore the inter-arrival distance between ¢, and
t, is 4.

Another meaningful or even better inter-
pretation of T;-(U) is to consider it as the
replenishment time for the consumed slack
space of the previous head. The following
corollary emphasises this interpretation ex-
plicitly:

Corollary 2 (Replenishment)

Given a feasible EQT set I' with utilisa-
tion U < 1. The replenishment interval or
inter-arrival interval is equal to Ty, (U) =

[1/(1 = U)l.

From this the following admission control
conditions can be concluded.

Corollary 3 (Admission conditions)
Given an EQT set I' with utilisation U <
1. Let 7 be a new EQT. 7, is admitted if

=)

and if the invocation of the previous EQT
was at least

T, >

Tyir(U) = {%-‘ earlier. (10)
If there is sufficient slack space, then equa-
tion 10 is too strict and more tolerant con-
ditions can be established. These conditions
are still under development.

In the following section we will show a
typical application for an EQT server. It
serves multimedia streams, which are started
as soon as possible.

6 EQT server and buffer

management

Consider a multimedia server which serves
a set I' of n streams {7 ...7,}. Depending
on the bit rate of the consumer and on the
properties of the server we need a double or
a triple buffer for each stream in order to
guarantee the absence of buffer over- or un-
derflow. Both buffer models are valid in the
context of this paper. Since the double buffer
model uses less resources we use this model.

Transferring data from the server to

a buffer is done in synchronous non-

10

preemptive quantum time slices and sched-
uled by QEDF. For normal QEDF streams,
the begin of filling the buffer is determined
by the order of deadlines, which, in the worst
case can be just before the deadline of the
first invocation. This can be prohibitive with
multimedia servers for streams with large pe-
riods, hence long deadlines.

Using EQTs is a solution to this problem.
The server properties conform to the defini-
tion of a synchronous task, or streams, as
given in section 3, so the n different client
streams in I' can be scheduled with an EQT
Client ¢ reads a buffer with a pe-
riod T, a non-integer value, which is deter-
mined by the application, while the server
writes the buffer with a period 7;:

server.

Ti=T7) = 1 (11)

The shorter period of the server implies
that we need to take measures to prevent
buffer overflow. We assume a double buffer
system with a total buffer capacity of 2B
with n streams 77 ...7,. After having filled
the first buffer with the head of the EQT
stream 7;, the consumption of the buffer can
be started immediately, simultaneously with
the start of the tail at the server side.

We define the buffer usage [3; as the
amount of buffer space that is in use by
stream 7;, varying such that 3; € [0,2B]. De-
note the ;% invocation of 7; as 77, and the
buffer usage at release time of invocation Tl-j
as ﬁf . At the start of the first tail invoca-
tion Tl-l, the buffer usage ﬂil is exactly B,
filled by invocation 77, the head. Invoca-
tion Tij is only started under the condition
that there is enough buffer space available:

3] < B — start (7)) (12)

If, at release time of invocation Tl-j , there is
not enough buffer space (3] > B), then the

release time rf as well as the deadline d{ are

delayed by 1 time unit.

Theorem 6 (No over- or underflow)

Given a double buffered PIT client/server
with buffer capacity 2B and with a client bit
rate consumption of period TY > 1, and a
server production of period T; = |Tf]|. The
release and deadline of an invocation are de-
layed by one time unit if at release time the
free buffer capacity is below B.

In such a system buffer over- or underflow
cannot occur for any stream T;.

The proof of theorem 6 is given in ap-
pendix A. This proof also gives rise to the
following corollary.

Corollary 4 (Single delay only)
In the system as described in theorem 6 no
two successive conditional delays will occur.

Periodic jukebox

We have built a jukebox server. It is the core
of a Video-on-Demand (VoD) system, which
serves real-time audio and video streams to
users distributed in a network. We investi-
gated two types of servers for the jukebox, a
periodic server and an aperiodic server. Both
servers schedule media streams of users such
that a stream can be started as soon as pos-
sible while maintaining the timely continu-
ation of all streams admitted earlier. The
aperiodic server does this by computing an
aperiodic schedule and it computes a nearly
optimal solution by solving a rather complex
(NP-hard) scheduling problem. The periodic
server may use EQT or QEDF scheduling.
We found that a periodic service is not a
good idea for a jukebox with a large disk
cache. However, when such a cache can-
not be afforded and one can only use limited
buffer space, the EQTs perform better than
normal QEDF tasks. For a description of the

11

aperiodic server we refer to [10] and for the
periodic server to [11].

7 Conclusion

In order to speed up the start of a new Quan-
tum EDF task, we shrink its first period into
one quantum slot. Such a task is called an
Early Quantum Task (EQT) and its role is
to be introduced as early as possible with-
out exceeding any of the deadlines of the al-
ready running tasks. We have shown that a
new EQT can be admitted if the utilisation
U < 1, as if it were a normal EDF task, and
that it may be started immediately if the sys-
tem has sufficient quantum slack left. When
a new EQT is introduced, one slack quantum
is consumed for the early execution. The sys-
tem regains this quantum automatically in
[1/(1 —U)] time units. The initial quantum
slack estimation depends on the utilisation
and on the shortest period T;,;, of the tasks
in use and is equal to [(1 — U)Tpin |-

Next we have illustrated the use of the
EQTs for a buffered multi-media server. We
have shown that EQTs provide a consider-
able speedup of the start of the stream at
the client side. Additionally we proved the
correctness of a simple mechanism to avoid
buffer over- and underflow.

Acknowledgements

Acknowledgements are due to Pieter Hartel
for valuable comments.

References

[1] S. V. Anastasiadis, K. C. Sevcik, and
M. Stumm. Server-based smoothing of
variable bit-rate streams. In Proceedings
of the ninth ACM Multimedia Confer-

ence, pages 147-158, Ottawa, October
2001.

J. H. Anderson and A. Shrinivason.
Mixed Pfair/ERfair scheduling of asyn-
chronous periodic tasks. In Proceedings
of the 13th FEuromicro Conference on
Real-Time Systems, pages 76-85, Delft,
June 2001.

S. K. Baruah, N. K. Cohen, C. G. Plax-
ton, and D. A. Varvel. Proportionate
progress: A notion of fairness in re-
source allocation. In ACM Symposium
on Theory of Computing, pages 345—
354, 1993.

S. K. Baruah, A. K. Mok, and L. Rosier.
Preemptively scheduling hard-real-time
sporadic tasks on one processor. In Pro-
ceedings of the Real-Time Systems Sym-
posium, pages 182—-190, December 1990.

Peter Bosch. Mixed-media file systems.
PhD thesis, University of Twente, June
1999.

Giorgio C. Buttazzo. Hard Real-
Time Computing systems - Predictable
Scheduling Algorithms and Applica-
tions. Kluwer Academic Publishers,
1997.

M. L. Dertouzos. Control robotics:
The procedural control of physical pro-
In Information Processing 74,
proceedings of IFIP congress T4, pages
807-813, Stockholm, Sweden, August
1974. North Holland Publishing Com-
pany. ISBN 0-7204-2803-3.

cesses.

K. Jeffay and D.L. Stone. Accounting
for interrupt handling costs in dynamic
priority task systems. In Proceedings
of the IEEE Real-Time Systems Sym-
posium, pages 212-221, December 1993.

12

[9]

[11]

[12]

[15]

J. H. M. Korst, V. Pronk, and
P. Coumans. Disk scheduling for
variable-rate data streams. In Proceed-
ings of the fourth international work-
shop on Interactive Distributed Mul-
timedia Systems and Telecommunica-
tion Services, IDMS ’97, volume LNCS
1309, pages 119-132. Springer-Verlag,
September 1997.

M. E. Lijding, P. G. Jansen, and S. J.
Mullender. A flexible real-time hierar-
chical multimedia archive. In Joint Int.
Workshop on Interactive Distributed
Multimedia Systems / Protocols for
Multimedia Systems (IDMS/PROMS),
page to appear, Coimbra, Portugal, Nov
2002. Springer-Verlag, Berlin.

Maria Eva Lijding, Ferdy Hanssen, and
Pierre Jansen. A case against periodic
jukebox scheduling. Technical Report
TR-CTIT-98-47, Centre for Telematics
and Information Technology, University
of Twente, 2002.

C. L. Liuand J. W. Layland. Scheduling
algorithms for multiprogramming in a
hard real-time environment. Journal of

the ACM, 20(1):46-61, 1973.

M. Spuri. Analysis of deadline sched-
uled real-time systems. Research Report
2772, INRIA, January 1996.

M. Spuri and G. Buttazzo. FEfficient
aperiodic service under earliest deadline
scheduling. In Proceedings of the IEEE
Real-time Systems Symposium, 1994.

M. Spuri and G. Buttazzo. Schedul-
ing aperiodic tasks in dynamic priority
systems. Journal of Real-time Systems,
10(2), 1996.

A Proof of theorem 6

Proof (No buffer over- and under-
flow) During 1 time unit %B is read from
the buffer. This means that during invoca-
tion 7' , which lasts T; time units, TZTCB is
read from the buffer. Each invocation also
fills the buffer once with B. Therefore, dur-
ing each invocation the buffer usage G grows
with B — TZTCB for which holds:

(13)

We derive equation 13 next, in three steps:

1. From equation 11 follows:
1 1 1
<

T,+1 T° T

(14)

2. First we derive 0 < B — T@TCB from

equation 14:
1 1
<
e = T;
1

—

1
_TZAF

)

1
0<B~Ti=B

)

0<1 —

3. Next we derive B — TZTCB < TCB from
equation 14:

Lo
T,+1 Tf

Ti<Ti+1 =

T -1, <1 =

1 1
1-T— < —= =
T <TC
B-T,— B —B

‘Te <T'3

)

Thus follows equation 13.

13

Buffer overflow Invocation Tij is only
started under the condition that there is
enough buffer space available (equation 12).
By using conditional delays this is guaran-
teed (see section 6). At the deadline of in-
vocation 77 the new buffer usage 3/ 1 will
be ﬁg + B —

occur, because:

TZTCB Buffer overflow cannot

; ; 1 by (12)
B =54 B T B
7

: 1

ﬁi+ISB+B—T-T—Bby:(>13)
by 11

/Bj+1<B+TCB y

Bt < 2B

Buffer underflow Since invocation Tij
is started only when there is enough buffer
space (ﬂzj < B), we have to make sure no
buffer underflow can occur. If no buffer un-
derflow will occur when the invocation is ex-
ecuted at the latest possible moment in time,
which is directly before the deadline, buffer
underflow will also not occur when the invo-
cation is executed earlier than that time. Say
invocation 77 is started at time d] — 1, s0 it
will just make its deadline (note: C = 1) At
this moment in time, the consumer will have
read (T} — 1)7 B. During the following time
unit the buffer will start filling up, so buffer
underflow will not occur if there is enough
data in the buffer before the consumption at
the beginning of 7:

1

B! = (T, =)7 B (15)

We will prove equation 15 by recursion:

1. At the start of consumption ﬁil = B,
which satisfies the condition, as derived

from equation 14:

2. When at release time TZJ- of invocation 7

J
i

equation 15 holds, it will also hold at
deadline time d/. During this time the
buffer usage 8 grows with B — TZ-%B to

the new buffer usage ﬁf 1

(a)

When ﬁf < B at release time, the
release is not delayed. Then:

i i 1 _ by (13)
B =B+ B-TiB 5
(]
gt > g)
1 1
Bt > (Tz‘—l)ﬁB
(]

When ﬁij > B at release time, the
release is delayed, and 3/ shrinks
with 2 B. So, 3/ > B— B when

invocation 77 is actually released.

This implies that equation 15 still
holds at release time, as derived
from equation 14:

L1
4
T, <T;y =

T—1<T¢—1 =

1 1
T. —1)—<1—- —
(Z)T;C_ TzC:>

1 1 i
(T; = 1) B < B~ =B < f}

K3 K3

14

O

3. From item 1 and 2 equation 15 can be
concluded.

This completes the proof.

