
ClockWork: a Real-Time Feasibility Analysis Tool

Pierre G. Jansen, Ferdy Hanssen, Sape Mullender
Dept. of Computer Science — University of Twente

E-mail: {jansen,hanssen}@cs.utwente.nl

May 21, 2002

Abstract

ClockWork shows that we can improve the flexi-
bility and efficiency of real-time kernels. We do
this by proposing methods for scheduling based
on so-called Real-Time Transactions. ClockWork
uses Real-Time Transactions which allow schedu-
ling decisions to be taken by the system. A pro-
grammer does not need to be aware of synchro-
nisation due to the sharing of resources and may
have the illusion of a run-to-completion seman-
tics even under preemptive scheduling protocols.
The ClockWork tool presented here analyses the
schedulability of a set of RT Transactions for a
variety of protocols and visualises the result in a
graphical form1.

Keywords real-time, transactions, schedula-
bility, inheritance, run-to-completion semantics,
feasibility analysis

Real-Time Transactions

Real-time (RT) systems have become an impor-
tant part of all the ubiquitous computers found in
our every day environment. These systems span
a wide variety of different tasks, from simple to
very complex, all requiring some form of timely
behaviour. This wide availability of RT systems
is recognised at the University of Twente as well
as the need for flexible and precise protocols to
guarantee the schedulability of a set of RT tasks.

We propose to model these tasks as a set of
Real-Time Transactions (RTTs). RTTs are nor-
mal periodic tasks. RTT τi is defined by its
deadline Di, period Ti, run-cost Ci, set of re-
sources used ρi, and inherited deadline ∆i, in-
spired by priority inheritance [11]. The determi-
nation of the inherited deadline ∆ depends on
the resource usage and can be determined off-
line. Once all inherited deadlines of all tasks in
the task set are computed, a task can behave as

1The research is executed at the University of Twente
in the real-time “Tukker” project.

a RTT. The scheduler does not need to have fur-
ther knowledge of resources for scheduling and re-
source synchronisation, even if preemptive sche-
duling is used. The system can do the scheduling
according to very simple scheduling rules based
on Earliest Deadline First (EDF), Rate Mono-
tonic (RM) or Deadline Monotonic (DM).

RTTs give the guarantee that shared resources
are used under mutual exclusion, also when the
scheduling protocols are preemptive. This is
an important advantage because the application
programmer does not have to be confronted with
synchronisation problems: no wait and sync or
p and v are needed. This facilitates the correct-
ness of the programs considerably; the applica-
tion programmer may have the illusion of run-
to-completion semantics.

A RT task should complete before its deadline.
A feasibility analysis serves to verify if this is
the case for all tasks. Such an analysis can be
simple; e.g. a task set of n tasks, scheduling with
preemptive EDF, with Di = Ti for all tasks is
feasible if

n∑
i=1

Ci

Ti
≤ 1 // See [7]

However, in case resources are used or Di <
Ti, more complex methods, originated by [1] and
refined by [4], are needed to verify the feasibility.
ClockWork can do this analysis as is shown in
the following section.

ClockWork

We will introduce our RT feasibility analysis tool
by means of a typical example. For theoretical
foundations we refer to [5]. Consider task set Γ1,
as defined in table 1. In order to take into ac-
count the feasibility we need to compute the Pro-
cessor Demand function H(t) [4] as well as the
Work Load function W (t) [4], defined as:

H(t) =
n∑

i=1

⌊
t−Di + Ti

Ti

⌋
Ci

1

mailto:jansen@cs.utwente.nl
mailto:hanssen@cs.utwente.nl


Di Ti Ci ∆i ρi

τ1 3 4 1 3 {a}
τ2 4 6 1 3 {A B}
τ3 5 7 1 5 {c}
τ4 6 9 2 4 {b}

Table 1: Specification of Γ1

0

0

5

5

10

10

time

lo
ad

τ1 1

τ2 1

τ3 1

τ4 2

W(t)

H(t)

L

Figure 1: Analysis of Γ1.

W (t) =
n∑

i=1

⌈
t

Ti

⌉
Ci

In figure 1 the 45 degree line is the time-line
and reflects the time elapsed since the zero point.
W (t) is the accumulative load that is inserted in
the system and may intersect the time-line at the
idle point L; a point at which all work load must
have been resolved, presuming that the processor
is working if there is any load. H(t) is the accu-
mulative load that needs to be resolved before the
respective deadlines. Without giving the details
of the correctness we can state that a task set is
schedulable in the idle interval [0, L] if H(t) ≤ t.
If H(t) > t at some point in [0, L] we can find
a trace of transactions such that a deadline is
exceeded and consequently the set is not schedu-
lable (that is not feasible).

If shared resources are used or if the task set
is not preemptive then the problem of blocking
may disturb the feasibility analysis. Blocking oc-
curs if a transaction with a short deadline has to
wait for the preemption of a transaction with a
long deadline beyond the deadline of the blocked
task. This can happen due to non-preemption,

either in a non-preemptive system or in a pre-
emptive system that uses shared resources. In
the case of shared resources, the system inhibits
preemption if such a shared resource is already in
use. Also preemption is inhibited if the number
of running blockers could be greater than one for
any other transaction. This property limits the
possible blocking to a maximum of one blocker.
This reduces the complexity of the schedulability
analysis considerably.

In task set Γ1 presented there are three dif-
ferent types of resources: a, b and c. Small let-
ters indicate read resources while capital letters
indicate write resources. A read resource can
be blocked by any write resource of the same
sort but not by another read resource. Write re-
sources of the same sort may block each other.
For instance τ1 can be blocked by τ2 over A and
τ2 can be a blocker over B.

Scheduling of transactions is executed under
EDF rules with one additional restriction: a re-
leased transaction τi with absolute deadline di

and relative deadline Di may preempt a running
transaction τr with absolute deadline dr and in-
herited deadline ∆i iff

(di < dr) ∧ (Di < ∆r)

Such scheduling is called EDFI, where the I
stands for inheritance.

Blocking can effectively be computed by sub-
stituting inherited deadlines for the resources. In
table 1 τ2 inherits the deadline of τ1 over A,
τ3 inherits its own deadline and τ4 inherits the
deadline of τ2. The inherited deadlines are repre-
sented in the ∆-column and are indicated as ∆i.

Possible blocking of the transactions can easily
be computed by the following blocker relation: τi

is blocked by τj if

∆j ≤ Di < Dj

And the maximum blocking of τi is

max{Cj | ∆j ≤ Di < Dj}

We can account for the maximum blocking by
correction of the function H(t) with the verti-
cal blocking lines at the respective deadlines of
the tasks. For instance at t = 3 the maximum
blocker is C2 with a maximum blocking of 1, at
t = 4 this is C4 = 2 and at t = 5 this is C4 = 2
(indirect blocking to prevent multiple blocking).

We state that if H(t), with the blocking correc-
tion, exceeds the time-line at the given deadlines
then we can construct a possible deadline excess
and the set cannot be schedulable anymore. The
proof is given in [5]. If H(t) including blocking
corrections stays below the time-line in the inter-
val [0, L], then the set is feasible.

2



The example shown works for transactions un-
der EDF and the principle of what ClockWork
can do is shown. However, ClockWork can do
much more: it can do feasibility analyses for the
following protocols and its associated attributes
in any combination:

• EDF, RM or DM

• preemption or not

• nested critical sections

• use of multiple unit resources

• slack time reservation

The complexity of the algorithm and the block-
ing computation is polynomial. Except when
multiple unit resources are considered, then the
complexity of the blocking computation becomes
exponential.

The ClockWork tool is written in Perl and
PostScript. The current version comprises
ca. 1800 lines of Perl code and ca. 1200 lines
of PostScript code. It is a command-line tool,
which reads a textual input file and produces
PostScript output. A web interface (written us-
ing ca. 350 lines of PHP code), is also available at
http://wwwes.cs.utwente.nl/feas/ and pro-
duces PostScript and PDF output.

Current work

The RTT protocol is currently working un-
der RT-Plan 9 [8], RT-Linux [10], and Linux-
RTAI [9]. Because the implementation of the
protocol itself as well as the feasibility analysis
is straight-forward, we also use the protocol for
the RT communication in the network of the At
Home Anywhere project. RTT is also a good
candidate for our video server Clockwise [2]. It
is furthermore used as a theory of reference in
the periodic jukebox server [3, 6].

Conclusion

ClockWork is a graphical tool and demonstra-
tor that can do the schedulability analysis for a
wide variation of real-time scheduling protocols
based on RT transactions with deadlines such as
RM, DM and EDF. Variations such as preemp-
tion or no preemption, nested critical sections,
read/write resources and multiple unit resources
can be specified. It shows that the scheduling
protocols give the user a run-to-completion se-
mantics, even under preemption. ClockWork
also shows that in most cases the feasibility anal-
ysis can be done in polynomial time and that it

can be used on-line for admission control in real-
time operating systems. The methods of Clock-
Work are currently used in several RT-Linux
clones and in Plan 9.

References

[1] N.C. Audsley, A. Burns, M.F. Richardson,
A.J. Wellings, Hard Real-Time Scheduling:
The Deadline Monotonic Approach, Inter-
nal report, Dept. of Comp. Science, Univ. of
York, 1991

[2] P. Bosch, S.J. Mullender, P.G. Jansen,
Clockwise: A Mixed-Media File Sys-
tem, Conference proceedings of the IEEE
ICMCS’99, Firenze, Italy, pp. 277–281, June
1999

[3] F. Hanssen, P.G. Jansen, M. Lijding, Using
an early quantum server to build a periodic
jukebox server, in draft

[4] P.G. Jansen, R. Laan, The stack resource
protocol based on real-time transactions,
IEE Proceedings Software, 146(2):112–119,
1999

[5] P.G. Jansen, A Generalised Scheduling The-
ory based on Real-Time Transactions, in
draft

[6] M. Lijding, S. Mullender, P.G. Jansen, Sche-
duling in Hierarchical Multimedia Archives,
Submitted for publication, 2002

[7] C.L. Liu and J.W. Layland, Scheduling Al-
gorithms for Multiprogramming in a Hard
Real-Time Environment, Journal of the
ACM, 20(1):40–61, 1973

[8] R. Pike, D. Presotto, S. Dorward, B. Flan-
drena, K. Thompson, H. Trickey, P. Win-
terbottom, Plan 9 from Bell Labs, Com-
puting Systems, 8(3):221–254, 1995, http:
//www.cs.bell-labs.com/sys/doc/

[9] Real-Time Application Interface for Linux
web site, http://www.aero.polimi.it/
~rtai/

[10] Real-Time Linux web site, http://www.
fsmlabs.com/

[11] L. Sha, R. Rajkumar, J.P. Lehoczky, Prior-
ity Inheritance Protocols: An Approach to
Real-Time Synchronization, IEEE Transac-
tions on Computers, 39(9):1175–1185, 1990

3

http://wwwes.cs.utwente.nl/feas/
http://www.cs.bell-labs.com/sys/doc/
http://www.cs.bell-labs.com/sys/doc/
http://www.aero.polimi.it/~rtai/
http://www.aero.polimi.it/~rtai/
http://www.fsmlabs.com/
http://www.fsmlabs.com/

