
Verifying the distributed real-time network protocol RTnet using Uppaal∗

Ferdy Hanssen, Angelika Mader, Pierre G. Jansen
Distributed and Embedded Systems group

Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente
PO-Box 217, 7500 AE, Enschede, the Netherlands, FAX: +31 53 489 4590

E-mail: hanssen@cs.utwente.nl, a.h.mader@utwente.nl, p.g.jansen@utwente.nl

Abstract
RTnet is a distributed real-time network protocol for

fully-connected local area networks with a broadcast ca-
pability. It supports streaming real-time and non-real-
time traffic and on-the-fly addition and removal of network
nodes. This paper presents a formal analysis of RTnet us-
ing the model checker Uppaal. Besides normal protocol be-
haviour, the analysis focuses on the fault-handling proper-
ties of RTnet, in particular recovery after packet loss. Both
qualitative and quantitative properties are presented, to-
gether with the verification results and conclusions about
the robustness of RTnet.

1. Introduction

This paper describes a formal analysis of the RTnet pro-
tocol [1]. It is a typical example of a protocol to be used
for streaming data in a distributed environment. These pro-
tocols support the transfer of multimedia content and re-
quire timely arrival to avoid disturbances of audio or video
streams. As a consequence these protocols require real-
time behaviour.

The techniques as presented in this paper can be used for
an extensive number of streaming data protocols, be it over
the net, for a distributed home environment, or currently
also for a network on a chip [2]. We will illustrate our
used technique on basis of the RTnet protocol for which
we have built a prototype environment, i.e., the hardware,
distributed system software and some test applications.

Our RTnet protocol is to be used on fully connected lo-
cal area networks with a broadcast capability. Its main goal
lies in the combination of Quality of Service (QoS) and
flexibility with regard to dynamics in the number of nodes
and real-time streams. The basic idea of the RTnet protocol
is quite simple. However, distribution and fault handling
lead to complexity in the number of possible scenarios that
make formal analysis a suitable approach to increase con-
fidence in the correctness of the protocol. We apply model

∗This work is sponsored by the Netherlands Organisation for Scientific
Research (NWO) under grant number 612.060.111, and this work is sup-
ported by the IBM Equinox programme.

checking as an experimental approach [3]: formal analysis
can only increase trust in the correctness of an implemen-
tation, but not guarantee its ultimate correctness. We are
aware of the fact that a formal correctness proof is only
about a model, and not about the implementation. Also, we
prove protocols only for a fixed number of nodes, not the
general case.

In order to get meaningful results from model checking
we follow two lines. First, we perform a high number of
model checking experiments. In the work presented here,
we did approximately 190000 experiments, each of which
is determined by the choice of representative values for pa-
rameters, such as timing parameters, possible package loss,
and different stream sets. The variation on parameters of
the model results in 10800 different instances of the pro-
tocol model. Each instance is verified against 18 different
properties, e.g., occurrence of collision, recovery, and re-
covery duration. Second, the quality of analysis results can
only be as good as the quality of the models used for anal-
ysis [4]. A systematic derivation of the model, where as-
sumptions and design decisions are made explicit makes a
model more understandable and increases the trust that the
model indeed reflects the protocol implementation. There-
fore, we clearly state what aspects of the protocol are de-
scribed in the protocol model.

For the analysis we used the model checker Uppaal [5].
There are three reasons for our choice:
Timed analysis: Uppaal is suitable for verification of real-

time systems that can be modelled as timed automata,
i.e., non-deterministic processes with a finite control
structure and real-valued clocks. These processes may
communicate through shared variables or a handshake
synchronization. Typical applications of Uppaal are
real-time controllers and communication protocols in
particular where timing aspects are critical [6–10].

Modelling and analysis support: Uppaal contains a simu-
lator that is useful during the development of the model.
The verifier has the possibility to create a diagnostic
trace, i.e., a sequence of actions leading to a state where
the property of interest fails. Such a sequence can be re-
played in the simulator to investigate the scenario lead-
ing to the failure.

1

mailto:hanssen@cs.utwente.nl
mailto:a.h.mader@utwente.nl
mailto:p.g.jansen@utwente.nl


A straightforward mapping: RTnet is defined using a de-
terministic state-transition diagram for every node. The
class of models that Uppaal can handle, consists of
timed, non-deterministic automata and conversion of
the deterministic state-transition diagram of RTnet to
a Uppaal automaton is relatively straightforward.
The organization of this paper is as follows. Section 2

briefly describes the RTnet protocol. The model of RTnet
and the properties used for analysis are described in sec-
tions 3 and 4, respectively. We describe the experiments in
section 5 and their results in section 6. Finally conclusions
are drawn in section 7.

2. RTnet

We briefly describe the distributed RTnet network pro-
tocol. An extensive description was published earlier [1].

RTnet can be used in any local area environment where
a distributed protocol is needed and where QoS support and
flexibility is required. It is a distributed protocol for use on
digital networks with real-time requirements. It allows pro-
cessors connected by a broadcast-capable network to com-
municate in real-time. The control is distributed and all
nodes in the network are expected to cooperate for guaran-
teeing real-time behaviour.

The protocol requires a fully-connected medium, such
as a common bus or Ethernet, where every message sent
can be received directly by all other nodes. It supports both
real-time and non-real-time communication. Applications
can reserve a portion of the available bandwidth to transmit
real-time data, organised in streams. Simultaneously, the
network can use the remaining bandwidth for best-effort
traffic. The key idea is that the network is scheduled dy-
namically, using standard real-time scheduling algorithms
normally used for task scheduling on a single CPU.

RTnet is designed to satisfy a set of goals. These are:
Ability to run on resource-lean devices: it must be imple-

mentable on devices with few resources.
QoS guarantees: bandwidth reservations for real-time data

must be met, existing streams may not be hindered by
newly added streams.

Non-real-time traffic: besides periodic real-time traffic our
network protocol should allow for best-effort traffic,
which may not affect the deadlines of real-time streams.

Fault tolerance: the physical layer of a network generally
does not provide faultless delivery of all packets. Our
network protocol should recover from network faults
during token transmissions.

Plug-and-play: addition and removal of nodes should be
automatic.

Can be based on existing hardware and protocols: it must
be possible to use existing hardware and software.
We distinguish two kinds of network traffic: real-time

and non-real-time. Real-time data has precedence over

non-real-time data, which means that non-real-time data is
sent only when no real-time data is being offered by any
node. Real-time data is allowed in the form of real-time
streams. Each stream is characterised by the bandwidth it
needs and a period. Admission control, based on feasibil-
ity analysis, is required before admitting a new real-time
stream to the network. The source node of a stream is then
periodically granted access to the network for that stream.

RTnet is based on a timed token on a broadcast capable
network. In normal operation, the token holder may use
the network exclusively. The passage of the token through
the network does not follow a static, predefined path, but
is scheduled on-the-fly by a dynamic version of a real-time
scheduler, such as Rate Monotonic (RM), Deadline Mono-
tonic (DM), or Earliest Deadline First (EDF).

There are two variants of RTnet. In unicast token RTnet
the token is sent to a single receiver, in broadcast token RT-
net the token is broadcast. The advantage of the broadcast
version is reduction of packets that have to be sent. But
unicast token RTnet does not need broadcasts for the basic
protocol operation, only for on-line node additions. Some
network architectures have an inherently lower priority for
broadcast packets than for unicast packets: a disadvantage
for broadcast token RTnet.

An important aspect of the token is that it does not fol-
low a predefined ring of all nodes. The token follows the
path of nodes with the highest priority to use the network.

All information necessary to decide which stream has
the highest priority is present in the token. This enables a
distributed approach to schedule the streams. All nodes
are assumed to collaborate on this distributed real-time
scheduling policy. Such a distributed scheduler needs syn-
chronized clocks on the various nodes, so all nodes decide
upon the same stream to have the highest priority.

Every node follows the state-transition diagram1 de-
picted in figure 1. For simplicity, this diagram shows only
the basic transitions and not most error-induced transitions.

There are basically three roles for the nodes that partici-
pate in RTnet. A node can be token holder, monitor, or idle.
Normally there is one token holder and one monitor. The
token holder is in charge of the network, and it is the only
node allowed to transmit data. The monitor is the guardian
of the token holder, and will come into action only when
the token is not propagating correctly. In normal operation
the monitor is always the previous token holder. The roles
of token holder and monitor are not fixed to specific nodes,
all nodes take turns on these roles. The idle role maps di-
rectly to the Idle state, the monitor role maps to the Monitor
state and the Poll state, and the token holder role maps to
the Announce, Activate, Dispatch, and Transmit state. In
the Off-line state the node does not have any role.

1Figure 1 depicts the unicast token variant, a figure of the broadcast
token variant was published in the extensive description of RTnet [1].

2



MonitorTransmit

F: send stop_mon,
send token

Activate

Dispatch

send poll
H: time out,

Idle

Poll

Off−lineAnnounce

E: send keep_mon

D: THT expired J: receive keep_mon

L: receive never_got_token or time out

C: invalid stream

B: valid stream

G: receive stop_mon

A: receive token K: receive stop_mon

R: announce phase

P: start new RTnet
N: leave RTnet

M: join existing RTnet

Q: announce phase done

Legend: / State/transition used in normal operation
/ State/transition used for node addition and removal
/ State/transition used to deal with fault conditions

Figure 1. Unicast token RTnet state-transition diagram

Normal operation

In normal operation an idle node will, at one point in
time, receive a token (transition A in the figure) and as-
sume the role of token holder. The token indicates which
stream is selected to begin data transfer. If that stream is
a valid stream on that node, it will commence transmission
(transition B). In the token is also stored for how much time
the node is allowed to transmit. If the stream is not valid
(e.g., when the responsible application has terminated the
stream), the Transmit state is skipped and a new stream is
selected immediately (transition C).

When the data transfer is finished (transition D), the next
stream is selected. During this computation the node is in
the Dispatch state. If the next stream originates from the
same node, it informs the monitor of this (transition E). If
the next stream originates from somewhere else, the mon-
itor is informed first and the token is passed to support the
next stream (transition F). Then the node assumes the role
of monitor.

In the Monitor state the node will simply wait for an ac-
knowledgement of the token holder that either the token has
been passed on (this is called a stop monitoring message)
or that the token holder would like to keep the token for a
bit longer (this is called a keep monitoring message). If the
token has been passed on, the node will leave the role of
monitor and become idle (transition G). In the second case
it will simply wait for the next acknowledgement. This is
the entire cycle when nothing goes wrong.

Fault handling

We assume network packets arrive intact or not at all.
They are not modified in transit. We assume that nodes
are fail silent, i.e., when they are down they produce no
network traffic at all.

When the acknowledgements to the monitor do not ar-
rive in time, the monitor assumes something is amiss. The
time out of the monitor is based on the Token-Holding
Time (THT) it allocated in the Dispatch state, extended by
a small margin, called δpoll. The monitor will have to find
out what went wrong and take appropriate action. To do
this it will first observe the network. If there is activity on
the medium from another node than the one it is monitor-
ing, it may conclude the token has not been lost, only a
stop monitoring message was lost. The node can then stop
monitoring and becomes idle.

If there is activity from the node it is monitoring, it may
conclude a keep monitoring message has been lost. Now
the monitor will have to actively monitor the token holder,
as it does not know how long it will have to wait until the
next stop monitoring or keep monitoring message arrives.

If there is no network activity, the conclusion is that the
token is lost. Now the monitor has to determine whether
the prospected token holder is still alive. To do this it will
transmit a poll message (transition H) and wait a short time
for an answer in the Poll state. The length of this short wait
is δpoll, the same as the margin added to the THT before
actually sending a poll message.

3



If the token holder is alive and has a valid token, it will
reply with a keep monitoring message, indicating how long
it wants to keep the token and the monitor will restart its
time-out timer (transition J). If the token holder is alive, but
already forwarded the token, it will reply with stop moni-
toring. The monitor will then become idle (transition K).

When the monitor receives a reply from the token holder
that states that a token has never been seen, the monitor
selects a new stream and a new token will be sent (transi-
tion L). If the token holder does not respond, the monitor
will delete it from the list of active nodes, together with
all streams originating from it, and a new stream will be
selected for transmission (transition L).

Dynamic network updates

Periodically the announce phase of the network is ac-
tivated. The token holder enters the Announce state (tran-
sition R): it broadcasts an invitation and waits for replies.
After a short time the next stream is selected (transition Q).

Nodes may join a live network in response to an invita-
tion asking for new participants and leave it (transitions M
and N). A node that does not receive this invitation within
a specified time out may start a new RTnet (transition P).

3. The Uppaal model

Timed automata

Systems are modelled in Uppaal as a parallel composi-
tion of non-deterministic, timed automata. Time is mod-
elled using real-valued clocks and time only progresses
in the locations of the automata: transitions are instanta-
neous. The guards on transitions between the various loca-
tions in the automata and the invariants in the various lo-
cations may contain both integer-valued variables and real-
valued clocks. Clocks may also be reset to some constant
in the transitions. Several automata may also synchronize
on transitions using handshakes. With the use of shared
variables it is possible to model data transfer between au-
tomata. Locations may be urgent, which means time is not
allowed to progress, and committed, which means time is
not allowed to progress and interleaving is restricted. If
only one automaton is in a committed location at any one
time, its transitions are guaranteed to be atomic.

Properties of systems are checked by the Uppaal model
checker, which performs an exhaustive search through the
state space of the system for the validity of these properties.
It can check for invariant, reachability, and liveness prop-
erties of the system. The properties are expressed using a
subset of Timed Computational Tree Logic (TCTL) [11].
Table 1 summarises the forms needed for our properties.

Table 1. Uppaal property forms

Syntax∗ Meaning
∃3 p Possibly p holds, i.e., there is a state where p

holds that is reachable from the initial state.
∀2 p Invariantly p holds.
p ; q Whenever p holds, eventually q will hold too.
∗ p and q are combinatorial, boolean expressions of automaton

locations and relational, numeric expressions over constants,
variables, and clocks

Modelling the RTnet protocol

We first describe a number of modelling decisions.
Fragment: we model the basic protocol consisting of the

normal operation mode and the fault handling mode.
This corresponds to the lower six states (with respec-
tive transitions) in figure 1. Not in the model are the
announcements (adding new nodes), the off-line phase,
and also the dynamic addition of streams. Reason for
that choice were complexity issues.

Protocol and model variants: the protocol exists in two
variants: unicast and broadcast token. The differences
between these two variants do not seem very large on
a high-level perspective. But the differences in the de-
tails, especially fault handling, are significant enough to
warrant the use of different models for the two variants.

Decomposition in automata: there is basically an automa-
ton for each node, and an automaton for the network.
For more complex verification properties we needed a
second network automaton to identify specific states.
There are two kinds of network communication: con-
trol packets and stream data packets. Control packet
transmission is modelled by handshake synchronisa-
tion, between sending node and network, and another
one between network and receiving node. The network
automaton contains a non-deterministic choice whether
a packet gets lost or not. Stream data packet transmis-
sion is modelled implicitly by only letting time pass.

Node automata. The node automaton corresponds directly
to the protocol state-transition diagram, shown in figure 1.
A node is always ready to synchronize on one of its receive
channels, i.e., in all non-committed locations it accepts an
RTnet control message. In a real system a node may, at any
time, receive a control message, due to faults. When this
message is unexpected a node will disconnect itself from
RTnet and try to join again later. In the model the node
automaton will enter an error location upon receipt of an
unexpected message and not participate in the protocol any
more, thus modelling the automatic disconnection.

Data transfer, i.e., network traffic that is application-
specific data and not an RTnet control message, is not mod-
elled explicitly, but it is assumed that data is transferred
while time passes in the TRANSMIT location. Loss of data

4



packets is not modelled, because the RTnet protocol is not
concerned with the correctness of application data and not
designed to be. It is assumed the protocol stack on top
of RTnet or the application will handle data corruption.
The main objective of the model is to verify if the proto-
col works when control messages are lost, because these
are essential to the proper operation of RTnet.

Since non-real-time data handling is outside the scope
of this analysis, it is modelled in a simplistic way. In RT-
net the token rotates in a Round Robin (RR) fashion among
the nodes to allow for a fair share of time for each node to
transmit its non-real-time messages. In the model this RR
behaviour is not modelled. Instead, if no real-time stream
is ready to send, a special stream is selected, called the
best-effort stream. This stream has no source node: if this
stream is selected the token remains at the node that sent
the last real-time stream. The token is only forwarded again
when the next real-time stream becomes ready to send.

Network automata. The network is essentially modelled
with a single automaton. This automaton waits for a hand-
shake synchronization with a sending node. There is a dif-
ferent handshake channel for each control message type,
allowing for easy control message identification at the re-
ceiving node and simple differentiation between message
types in the network automaton, as not all control messages
have to be handled in the same way.

After the handshake synchronization with the sending
node, the network automaton non-deterministically either
performs a handshake synchronization with the receiving
node or it waits for a new handshake with a sending node.
In the latter case the control message is lost. Note that the
network automaton does not introduce a delay on control
messages. This is reasonable because the network delay is
on a time scale one order of magnitude finer than the time
effects investigated with our model.

A message will arrive at the receiving node at the same
time as it left the sending node, but a message is guaran-
teed to arrive at the receiving node at a later point in the
sequence of events than it left the sending node. Also note
that the network automaton will always process only one
control message type at the same time. In certain config-
urations it is possible that multiple poll messages are pro-
cessed at the same moment. If more than one poll message
is processed at the same moment, these are, by definition,
all lost.

There are two extended versions of the network automa-
ton. These are needed for detection of multiple indepen-
dent, simultaneous control messages that are sent at the
same time. Such multiple independent, simultaneous con-
trol messages might, on a real network, collide and cause
non-deterministic transmission delays or delivery failures.
The extended network automata detect invalid successions
of control messages.

4. Verification properties

We want to analyse the following aspects of RTnet:
1) normal operation,
2) recovery from network failures and recovery time, and
3) occurrences of simultaneous control messages.

In total, there are 18 different properties that allow con-
clusions about the issues above. They are verified using
Uppaal for different versions and configurations of our pro-
tocol model. Therefore, they have to be expressed in the
Uppaal property language. In the following we will dis-
cuss the most important properties.

Properties to analyse normal operation

A state of the model is called stable when the following
conditions are met:
• at most one node has the role of token holder, call this

condition ψ1/t/holder;
• at most one node has the role of monitor, call this con-

dition ψ1/monitor;
• no nodes are about to send or have sent a poll message,

call this condition ¬ψext/poll
i for every node i;

• no nodes are off-line, i.e., are in the location ERROR.
We consider the first three stability conditions strong:

they must always be met. The last stability condition we
consider weak: a network with one or more off-line nodes
can be stable and operating correctly, just with fewer nodes.

Using the definitions of ψ1/t/holder, ψ1/monitor, and ¬ψext/poll
i

the stability condition ψstable can be constructed for a sys-
tem with n nodes:

ψstable = ψ1/t/holder ∧ ψ1/monitor ∧

n∧
i=1

¬ψ
ext/poll
i ∧

n∧
i=1

¬nodei.ERROR

With the condition ψstable the stability property φstable to
verify the model with may be constructed:

φstable = ∀2ψstable

Property φstable expresses that the system is always sta-
ble. The expected result of this property is true if the pa-
rameter packet loss is set to zero and false otherwise.

Other properties whose definitions will not be shown
due to space constraints, provide useful insights in the nor-
mal behaviour of the protocol:
• deadline misses are checked by the property φdl/miss;
• φnet/idle expresses if the best-effort stream is ever used,

i.e., if there is room for non-real-time traffic;
• φ1/transmit expresses that there is at most one node trans-

mitting, i.e., is in the Transmit state of the protocol;
• φ1/dispatch expresses that there is not more than one node

computing the next stream, i.e., is in the Dispatch state;
• φ1/monitor expresses that there is at most one monitor, i.e.,

at most one node is in the Monitor state of the protocol.

5



Properties to analyse network recovery

Network failure recovery basically comes down to the
question if packet loss results in a permanently stable state
of the system. When a packet is lost, the system may reach
an unstable state, e.g., because the monitor sent a poll mes-
sage to some other node to actively recover from a fault,
and thus the third stability condition is violated.

Property φstabilize expresses that an unstable state of the
system will always lead to a stable state of the system, i.e.,
if the system will recover from a fault. We expect φstabilize

to be satisfied if at most one packet loss is allowed (for
the network automaton), and possibly true otherwise. The
stabilization property φstabilize is constructed using ψstable:

φstabilize = ¬ψstable ; ψstable

For satisfaction of the property φstabilize no node may
reach the location ERROR. A weaker form of this property,
called

?
φstabilize, allows nodes to reach the location ERROR,

i.e., the fourth stability condition has been dropped. With
this property we want to check, if the protocol, even in
the case of errors and nodes being off-line, still continues
working with the remaining nodes.

Another interesting property is whether there is at most
one node trying to actively recover from a fault. Prop-
erty φ1/poll expresses whether at most one node is in the
protocol’s Poll state. This property is expected to be satis-
fied with a packet loss of upto one, but may not be satisfied
with higher packet loss.

Properties to analyse recovery duration

We define the recovery duration to be the time between
a packet loss and the moment of recovery. We determine
the possible recovery durations by finding the minimal and
the maximal duration for a given set of parameters. Details
are provided in appendix A.

The maximal duration is estimated to be the sum of the
estimated largest continuous network usage CLCU of a sin-
gle stream and one poll delay. For unicast token RTnet we
expect this estimate to be the largest time needed before the
recovery procedure is started in the case of single packet
loss. For broadcast token RTnet a single token loss equals
the loss of two packets in the unicast token variant, a stop
monitoring message with a subsequent token message. In
that case this estimate may be too low and actually is in
some cases, as we will see in section 6.

Properties to analyse occurrence of simultaneous
control messages

A faulty situation that could occur is when at least two
nodes send a control message at the same moment. To eval-
uate if this situation of multiple independent, simultaneous

Table 2. Stream set SC (4 nodes, utilization ≈ 82%)

Stream ID 0 1 2 3 4 5 6 7
Source ID 0 1 2 3 0 1 2 2
Period 3000 3000 3000 3000 2000 500 500 250
Workload 10 10 10 10 20 100 200 50

control messages can occur, two properties are needed. The

first property, φ
simultaneous
packets sent , expresses whether this situation

occurs. This property can only be used in conjunction with
the extended network automata.

There is only one asynchronous control message present
in the RTnet protocol: the poll message. Multiple indepen-
dent, simultaneous control messages should only be caused
by multiple nodes sending a poll message at the same time.
To evaluate if this is indeed the case, property φtp > 1 is sat-
isfied if more than one node can be ready to send a poll.

The results of verifying properties φ
simultaneous
packets sent and φtp > 1

on models using one of the extended network automata
makes it possible to derive situations where multiple inde-
pendent, simultaneous control messages are not caused by
multiple poll messages and to determine their causes and
possible solutions.

5. Experiments

We performed model checking runs with Uppaal 3.5.9
for 10800 different configurations, and we checked 18
properties for each configuration. Each configuration is de-
termined by the following settings and parameters:
1) Unicast token and broadcast token variants of RTnet.
2) There are three network model configurations that al-

low for different analysis of situations where packets
are sent simultaneously. The simple network automa-
ton cannot detect simultaneously sent packets. Both
extended network automata can detect these. The dif-
ference between these two automata is that one takes si-
multaneous polls into consideration, and one does not.
The combination of results derived with both extended
network automata allows us to reason about the pres-
ence of simultaneous packets that are not both polls.

3) Stream sets: these sets are aimed at obtaining as many
different situations in the models as possible with vary-
ing degrees of complexity. Complexity in this case
means mostly the difference in stream periods. Usually
it can be stated that the larger the least common multi-
ple of the stream periods is, the larger the state space of
the model will be. We use 10 different stream sets, two
examples are shown in tables 2 and 3.

4) The scheduler works in units of 10 time units, which al-
lows for values of the poll delay both smaller and larger
than this scheduling granularity. The values for the poll
delay δpoll used in the experiments are 4, 5, 6, 10, and
50 time units. There is always a delay of 2δpoll before

6



Table 3. Stream set SD (4 nodes, utilization ≈ 96%)

Stream ID 0 1 2 3 4 5
Source ID 0 1 2 0 3 1
Period 300 400 400 600 600 2400
Workload 30 70 70 60 240 20

the monitor will possibly generate a new token. Since
the scheduling granularity is 10 time units, a δpoll of
5 time units makes it likely that the generation of a new
token coincides with a scheduling decision on another
node. The values 4 and 6 time units are used to deter-
mine the behaviour of RTnet when using a δpoll around
this point. A δpoll of 10 time units means the poll mes-
sage is likely to coincide with the dispatch phase of an-
other node. The value 50 time units is chosen, because
the current prototype uses this arbitrarily chosen value.

5) Packet loss is varied between 0 and 2 packets. Dis-
abling packet loss is used to check RTnet behaves as it
should in a normal situation, poll messages should not
occur in this case. The loss of one packet is a situa-
tion RTnet is designed to handle, which means nothing
must go wrong in this case either. Poll messages can oc-
cur, but the ERROR location of a node should never be
reached. The loss of two or more packets is a situation
RTnet is not designed to handle with minimal disrup-
tion. A loss of two packets is used to experiment how
well RTnet can deal with this situation.

6) A node may transmit for a shorter duration than allo-
cated: it releases the token earlier than expected. Non-
deterministically modelling all possible (earlier) release
times for a node leads to an instance of the well-known
state-space explosion problem. A modelling approxi-
mation is to limit the number of moments when a node
may use less time to 0, 1, and 2. We call this parameter
early token release. (Additionally, built into the model
as constants, we allow only two different moments in
time when a token may be released earlier.)

7) The situation can occur that two monitoring nodes send
a poll message at the same moment. There are two pos-
sibilities for the resulting situation, depending on the
technical properties of the network used: either both
poll messages cause a collision and both are lost, or
they arrive sequentially. The parameter simultaneous
polls allows to choose if collisions are possible.

8) Observation of the network traffic can give useful infor-
mation to nodes busy with fault handling. In certain sit-
uations a node holding the token has no data packets to
send. Other nodes cannot detect that the token-holding
node is still alive, if it does not send packets. A solu-
tion here is that a token-holding node sends “still-alive”
packets periodically. The model parameter best-effort
data transmission allows to switch on and off the send-
ing of “still-alive” packets when the token holder has

Table 4. Verification results overview with packet loss of 1

RTnet
variant φstable φdl/miss φnet/idle φ1/transmit φ1/dispatch φ1/monitor

Unicast
token false varies mostly

true true mostly
true false

Broadcast
token false varies mostly

true
mostly

true varies false

RTnet
variant φstabilize

?

φstabilize φ1/poll φtp > 1 φ
simultaneous
packets sent

Unicast
token true true true false varies

Broadcast
token true true varies varies varies

selected the best-effort stream. If a real-time stream is
selected, a node is assumed to send data packets belong-
ing to that stream, i.e., a real-time stream is assumed to
always have data waiting to be sent.

6. Results

All results described below are based on verifications
by the model checker. For most experiments the model
checker generated an answer, but a small percentage caused
the model checker to run out of memory, mainly in the ex-
periments where more than one packet is lost.

6.1. Protocol behaviour during normal operation

All verification results for normal operation are in agree-
ment with the expected results. For each property the re-
sults are the same, regardless of the choice of settings and
parameters. An exception is packet loss that is obviously
set to zero. Only the result of φnet/idle is not the same for
all settings and parameters: stream sets with a utilization
of 100% do not have space for non-real-time traffic when
early token releases are not allowed, and the verification
results confirm this. From this we may conclude that the
model of the protocol operates properly when no network
faults occur.

6.2. Recovery when one packet is lost

In the case of a single packet loss most verification re-
sults are as expected. An overview of the properties men-
tioned in section 4 is shown in table 4. For each protocol
variant the results are listed for the most important prop-
erties. The term “varies” means diverse results, depending
on the parameters and settings. Results printed in italics are
the expected results. The anomalies are explained in detail
in appendix B, we provide a summary here.

Both unicast and broadcast token RTnet stabilize with-
out any node going off-line, i.e., reaching the ERROR loca-
tion. Deadline misses occur in both variants, but they are
to be expected when control packets may be lost.

A design flaw was found during the verification process.
Two nodes could reach the Dispatch state at the same time,

7



caused by the wrong reply to a poll message by an idle
node. The solution is to add more information to the poll
message so the recipient can map the poll message to the
corresponding token and provide a correct reply.

The broadcast token variant, however, is less robust than
the unicast token variant. In broadcast token RTnet it is
possible that more than one node actually reach the Trans-
mit state at the same time. This is caused by a collision
between two simultaneous poll messages.

Simultaneous transmissions of control messages may
occur in both protocol variants in the presence of network
faults. One of those control messages is always a poll
message. These simultaneous transmissions occur less fre-
quently with unicast token than with broadcast token RT-
net. The model uses a constant poll delay that is the same
for all nodes. The chance that simultaneous transmissions
occur is already small, but it can be made smaller by in-
troducing a random delay in the poll delay δpoll. Then the
chance of two simultaneous transmissions occurring is neg-
ligible, if the random poll delay is combined with a listen
phase before deciding to send an actual poll message.

6.3. Recovery when more than one packet is lost

When more than one packet loss is allowed, the results
deteriorate somewhat. This can be expected. Simultaneous
control messages occur more frequently then.

In the absence of early token releases, stabilization al-
ways occurs, albeit with nodes reaching an error state in
some of the experiments. When early token releases are
allowed, the stabilization results are inconclusive, as a con-
siderable amount of these experiments could not be run due
to lack of memory in the model checker.

6.4. Recovery duration

The maximum recovery durations are different for each
RTnet variant. The minimum recovery duration is 0 time
units for unicast token RTnet: the delay between a stop
monitoring message and the subsequent token message.
For broadcast token RTnet the minimum recovery duration
is either the poll delay δpoll or the scheduling granularity,
depending on the stream set used.

The maximum recovery duration for unicast token RT-
net is exactly the estimated value CLCU + δpoll in approxi-
mately 75% of all cases. In all other cases it is lower, the
stream set is then the only parameter that influences this.

For broadcast token RTnet the maximum recovery du-
ration is exactly the estimate in approximately 65% of all
cases. It is lower than the estimate in approximately 30%
of the cases, and higher in the remaining 5%. The reasons
for it being higher are twofold.

All are caused by two polls colliding and then being
dropped, but the sequence of events after that are differ-
ent. One sequence of events is due to the time out after

sending a poll message without getting a reply. In this case
the maximum duration is CLCU + 2δpoll.

The other sequence of events is slightly more complex:
a time out occurs after the disappearance of the simulta-
neous polls, but both nodes then decide that it is time to
transmit best-effort traffic. This may only happen when
early token releases are allowed and best-effort data trans-
mission is not required. As both tokens are regenerated,
both nodes do not have to inform a monitor, and no con-
trol messages are exchanged until some real-time stream
becomes eligible for transmission. This may cause a very
long delay before the recovery is completed, as both nodes
cannot detect each other’s best-effort data transmissions.

7. Conclusions
We have analysed the RTnet protocol with the timed au-

tomaton model checker Uppaal. Variation of parameters
for timing and data result in 10800 instances of the model,
that each have been verified against 18 different properties.
These properties cover qualitative as well as quantitative
aspects.

The model checker and its interface have turned out to
provide a comfortable environment for modelling and anal-
ysis. The expressiveness and structure of timed automata
allows for straightforward modelling of RTnet.

We experienced as a drawback that Uppaal does not
quantify probabilities: it analyses all possible scenarios.
Having found a scenario leading to an undesired state, there
is no information about the probability of this scenario.

We have provided a model that is insightful, therefore
this gives confidence that the model reflects the implemen-
tation, i.e., it is also truthful. These quality criteria of a
model, together with the high number of model checking
experiments, increase our trust that the RTnet protocol be-
haves as expected.

Moreover, during analysis a design flaw was detected,
leading to an improved version of the protocol.

The verification shows that RTnet operates as adver-
tised in the absence of network faults. Unicast token RTnet
seems more robust than broadcast token RTnet when net-
work faults are present. Fault recovery may cause stream
deadlines to be missed. If this cannot be tolerated, the feasi-
bility analysis that is done at stream admission time should
take recovery times into account. We found a good estimate
for the maximum recovery time for both RTnet variants.

For better performance RTnet can use early token re-
leases on network architectures with collision detection.
But early token releases should be disabled on networks
without collision detection, as it disturbs fault recovery.

We have shown that, despite some minor drawbacks, our
structured and experimental model checking approach, in
combination with Uppaal, allowed us to create a trustful
RTnet. We can recommend it for the analysis of other net-
work protocols with real-time or QoS requirements.

8



References

[1] F. Hanssen, P. G. Jansen, H. Scholten, and S. Mullen-
der, “RTnet: a distributed real-time protocol for broadcast-
capable networks,” in Proc. Joint Int. Conf. on Autonomic
and Autonomous Systems and Int. Conf. on Networking
and Services (ICAS/ICNS 2005). IEEE Computer Society
Press, Oct. 2005, ISBN 0-7695-2450-8.

[2] N. Kavaldjiev, G. J. M. Smit, P. G. Jansen, and
P. T. Wolkotte, “A virtual channel network-on-chip for
GT and BE traffic,” in Proc. IEEE Computer Society
Annual Symposium on Emerging VLSI Technologies and
Architectures (ISVLSI ’06). IEEE Computer Society Press,
Mar. 2006, pp. 211–216, ISBN 0-7695-2533-4.

[3] E. Brinksma, “Verification is experimentation!” Int. J. on
Software Tools for Technology Transfer, vol. 3, no. 2, pp.
107–111, May 2001.

[4] E. Brinksma and A. Mader, “On verification mod-
elling of embedded systems,” Centre for Telem-
atics and Information Technology, University of
Twente, Enschede, the Netherlands, Tech. Rep. TR-
CTIT-04-03, Jan. 2004. [Online]. Available: http:
//www.ub.utwente.nl/webdocs/ctit/1/000000e6.pdf

[5] K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a nut-
shell,” Int. J. on Software Tools for Technology Transfer,
vol. 1, no. 1–2, pp. 134–152, Dec. 1997.

[6] P. R. D’Argenio, J.-P. Katoen, T. C. Ruys, and J. Tretmans,
“The Bounded Retransmission Protocol must be on time!”
in Proc. 3rd Int. Workshop on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS ’97),
E. Brinksma, Ed., vol. LNCS 1217. Springer-Verlag, Apr.
1997, pp. 416–431, ISBN 3-540-62790-1.

[7] A. David and W. Yi, “Modelling and analysis of a commer-
cial field bus protocol,” in Proc. 12th Euromicro Conf. on
Real-Time Systems. IEEE Computer Society Press, June
2000, pp. 165–172, ISBN 0-7695-0734-4.

[8] K. Havelund, A. Skou, K. G. Larsen, and K. Lund, “Formal
modeling and analysis of an audio/video protocol: An in-
dustrial case study using UPPAAL,” in Proc. 18th IEEE Real-
Time Systems Symposium. IEEE Computer Society Press,
Dec. 1997, pp. 2–13, ISBN 0-8186-8268-X.

[9] H. E. Jensen, K. G. Larsen, and A. Skou, “Modelling and
analysis of a collision avoidance protocol using SPIN and
UPPAAL,” in Proc. 2nd Workshop on the SPIN Verification
System, vol. DIMACS 32. American Mathematical Society,
Aug. 1996, pp. 1–20.

[10] H. Lönn and P. Pettersson, “Formal verification of a TDMA
protocol start-up mechanism,” in Proc. 1997 Pacific Rim In-
ternational Symposium on Fault-Tolerant Systems (PRFTS
’97). IEEE Computer Society Press, Dec. 1997, pp. 235–
242, ISBN 0-8186-8212-4.

[11] R. Alur, C. Courcoubetis, and D. L. Dill, “Model-checking
for probabilistic real-time systems (extended abstract),” in
Proc. 18th Int. Colloquium on Automata, Languages and
Programming (ICALP ’91), J. L. Albert, B. Monien, and
M. Rodrı́guez-Artalejo, Eds., vol. LNCS 510. Springer-
Verlag, July 1991, pp. 115–126, ISBN 3-540-54233-7.

Appendix A
Determining recovery duration

To determine the recovery time, the model is supplied
with an additional clock and some flags. Upon packet loss,

this clock is reset. The lower and upper bounds for the re-
covery time then equal this clock’s lower and upper bounds
when the flags are set properly and the system is stable.

This approach only works with a single packet loss, as a
second packet loss will reset the clock, thus losing the in-
formation about the earlier packet loss. The solution would
be that the network automaton detecting the (second) pack-
age loss does not reset the clock, if the system is not stable
yet. However, stability of the system is a distributed prop-
erty that the network automaton has no information about
in the current setting.

The bounds of the additional clock are determined by
iteration. Finding the lower bound for the recovery time
is done by evaluating property φl/bound(t) for all values of t,
starting at t = 0 and evaluating increasing values of t until
φl/bound(t) is satisfied.

Similarly the upper bound for the recovery time is found
by evaluating property φu/bound(t) for all values of t. The
algorithm used to find the upper bound starts at t = CLCU +

δpoll. If φu/bound(t) is false for this starting value, φu/bound(t) is
evaluated for increasing values of t until φu/bound(t) is true,
because the estimate is too low. Otherwise φu/bound(t) is
evaluated for decreasing values of t until φu/bound(t) is false.
The estimated largest continuous network usage CLCU of a
single stream is given by:

CLCU = min
(
max

i
{Ci}, 2 min

i
{Ti −Ci}

)
where Ti is the period of stream i and Ci is its workload:
Ci = (Bi/B)Ti), where Bi is the bandwidth required by
stream i and B is the available bandwidth on the network.

Appendix B
Packet loss recovery and simultaneous control messages

In the case of a single packet loss most verification re-
sults are as expected. An overview is shown in table 4 in
section 6.2. The anomalies are explained below.

Unicast token RTnet recovery

Unicast token RTnet produces verification results al-
most as expected. It always stabilizes without throwing out
nodes. Deadline misses do occur, but they are to be ex-
pected when some nodes do not receive the token in time
and the stream set has a high utilization.

Poll message reply. We found the following design flaw.
There are a few cases where two nodes are in the Dispatch
state at the same time. This is caused by a wrong reply
to a poll message by an idle node. There are two possible
responses to this poll. An earlier version of RTnet always
responded with a never got token message. There exists a
situation where this reply is wrong, resulting in two token
holders. Verifications of an earlier version of the model

9

http://www.ub.utwente.nl/webdocs/ctit/1/000000e6.pdf
http://www.ub.utwente.nl/webdocs/ctit/1/000000e6.pdf


show this problem. Note that a prerequisite for this situa-
tion to occur is that a node is allowed to use less transmis-
sion time than allocated and release the token early.

To fix this problem it is necessary to map a poll message
to the specific token it is referring to. If the token has al-
ready been seen, a stop monitoring message can be replied
to the poll, instead of a never got token message. To do this
the poll message has to be augmented with the stream iden-
tifier and a counter, to provide the poll to token mapping.

The current model still allows multiple nodes being in
the Dispatch state because the counter for the poll to to-
ken mapping is not large enough. The model uses a 1-bit
counter: enough if the poll delay is not too large with re-
spect to the scheduling granularity. The property φ1/dispatch

is false with a packet loss of one only when δpoll is 50 time
units. If a large δpoll is used, or if higher packet loss needs
to be dealt with, a larger counter is needed.

Broadcast token RTnet recovery

The broadcast token variant of RTnet is less robust than
the unicast token variant. Broadcast token RTnet always
stabilizes without any node reaching the ERROR location,
i.e., without throwing out any nodes. But when simultane-
ous polls and early token releases are allowed, in 40% of
the experiments more than one node reach the protocol’s
Dispatch state. In 15% of these experiments more than one
node actually reach the Transmit state at the same time.

The reason for more than one node reaching the Trans-
mit state is as follows. Two monitors may decide to send a
poll at the same time, because the poll delay δpoll is equal
for both. When these two simultaneous polls collide and
are lost, both polling nodes decide a new token is needed at
the same time, again because of equal poll delays.

One node finds it needs to keep the token, while the
other node forwards its token. When the node that kept
its regenerated token notices the other token being for-
warded, there are two possible courses of action for this
node: (1) stop transmitting, discard the local token and wait
for a new token or announcement to resume normal opera-
tion, or (2) send a message to both source and destination
of the observed token, telling them to discard that token.
Given that all nodes are equal and it is impossible to dis-
tinguish which token is the “better one”, the first choice is
made, as it has the least possibilities of network disruption.

Deadline misses occur in this variant as well, but they
are expected, just as with unicast token RTnet. With a high
utilization these cannot be avoided when packets are lost.

Simultaneous transmissions

Independent, simultaneous control messages do occur,
but there is always at least one poll message involved. This
is logical as the poll message is the only asynchronous mes-
sage in RTnet. Although a node that is about to send a poll

message always listens first before deciding a poll message
is necessary, it is always possible that a poll message is
transmitted at the same moment as some other message.

The model only describes collisions between simultane-
ous poll messages and drops them. The result is that both
monitors that sent the poll messages conclude that the in-
tended poll recipients have failed. Both remove them from
their local token. As dynamic node additions are not mod-
elled, the nodes that have been removed from the token will
remain idle forever. They have no means of detecting they
are no longer part of the node list in the token. The real RT-
net lets these nodes rejoin at the next announcement phase.

The model deals with combinations of a simultaneous
poll message and some other control message in a serial
fashion. These situations are invariably caused because the
monitor that is listening for network traffic, does not ob-
serve these messages. In many cases the monitoring node
that will eventually send a poll message, is already actively
observing its token holder. This token holder is transmit-
ting non-real-time traffic. Because the non-real-time phase
is not modelled with the token travelling along all nodes
in a RR fashion, the monitor will keep observing its token
holder until it tries to transfer the token elsewhere. And
there are situations that this token transfer is at the same
moment in time as the next time out of the monitor, result-
ing in a superfluous poll message.

Simultaneous transmissions are more frequent with the
broadcast token variant than with the unicast token variant.
But comparing simultaneous transmissions of the broad-
cast token variant with one packet loss to the unicast token
variant with a packet loss of two shows that simultaneous
transmissions occur with a comparable frequency. This can
be explained by the fact that the complete loss of a broad-
cast token is equal to the loss of a stop monitoring message
and its successive token message in unicast token RTnet.

For the broadcast token variant simultaneous transmis-
sions are mostly caused by the same reason as they are for
the unicast token variant. The additional cause is due to
a second token on the network. As discussed in the sec-
tion on broadcast token RTnet recovery above, this token
is observed by the node that is transmitting data, i.e., is in
the Transmit state. This node will relinquish its token and
become idle, waiting for the token to arrive or the next an-
nouncement phase, to rejoin the network if it was deleted
from the regenerated token.

The model uses a constant poll delay that is the same
for all nodes. The chance that simultaneous transmissions
occur is already small, but it can be made smaller by in-
troducing a random delay in the poll delay δpoll. Then the
chance of two simultaneous transmissions occurring is neg-
ligible, if the random poll delay is combined with a listen
phase before deciding to send an actual poll message.

10


	Introduction
	RTnet
	The Uppaal model
	Verification properties
	Experiments
	Results
	Protocol behaviour during normal operation
	Recovery when one packet is lost
	Recovery when more than one packet is lost
	Recovery duration

	Conclusions
	References
	Appendix A: Determining recovery duration
	Appendix B: Packet loss recovery and simultaneous control messages

