
Experimental implementation of a real-time token-based
network protocol on a microcontroller

Ferdy Hanssen, Robert Krikke, Bert Baron, Pierre G. Jansen, Hans Scholten
Distributed and Embedded Systems group

Faculty of Electrical Engineering, Mathematics, and Computer Science —University of Twente
PO-Box 217, 7500 AE, Enschede, the Netherlands

Fax: +31 53 489 4590
E-mail: hanssen@cs.utwente.nl

Abstract— The real-time token-based RTnet network
protocol has been implemented on a standard Ethernet
network to investigate the possibility to use cheap com-
ponents with strict resource limitations while preserving
Quality of Service guarantees. It will be shown that the
proposed implementation is feasible on a small network.
For larger networks a different approach is necessary, using
delegation by means of proxies. A delegation proposal will
be discussed. For small networks it is possible to use a PIC
microcontroller in combination with a standard Ethernet
controller to run the RTnet network protocol. As more
systems are added to the network the performance of this
combination becomes insufficient. When this happens it is
necessary for the microcontroller to delegate some tasks to
a more powerful master and to organize a low-level com-
munication protocol between master and slave.

I. Introduction

Digital networks are gradually being introduced
into our homes. Already we use networks to connect
our home computers to the internet. Advanced cli-
mate control systems use a network to gather infor-
mation from the various sensors in the house and ad-
just the in-house climate to the inhabitants’ wishes.
Currently these networks operate independently. In
the not too distant future these networks will be inte-
grated into one. This single network will support the
various multimedia, data, and control needs.

To be able to mix all these kinds of traffic on one
network, it needs to be possible to provide quality of
service guarantees. Applications need to be able to re-
serve a portion of the available bandwidth to transmit
multimedia data. At the same time it must be possible
to allow best-effort traffic to use as much bandwidth
as is available. The application area of such a network
is not just the home, it can also be put to use in an
industrial environment, inside a common-bus switch
or to let individually clocked components inside an
integrated circuit communicate.

In this paper we will present an experimental imple-

mentation of a real-time network protocol on a stan-
dard microcontroller. This protocol is called RTnet.
The RTnet protocol is used to provide QoS for media
streams on a network. But it can also be used for com-
mand and control signals on that same network, so it
is important to research the possibility of implement-
ing this protocol, or some variant, on small processors
that are used to control sensors and actuators.

After a short overview of the protocol, we will show
how the microcontroller implementation differs. Then
we will show a sample application and discuss the pros
and cons of this implementation.

II. Operation of RTnet

RTnet can run on any single-segment network which
supports a broadcast capability. The current proto-
type is based on the CSMA/CD Ethernet protocol [1].
In effect this means that RTnet can be built on any
regular Ethernet hardware by only changing the pro-
tocol software. RTnet creates a deterministic network
by allowing only one node to use the network at any
given time. RTnet is a token-based protocol, just like
Rether [2], developed at SUNY Stony Brook.

Rether distributes its token among the nodes in a
simple, static Round-Robin manner. RTnet, however,
uses a more sophisticated algorithm, where the token
is allocated to nodes according to their bandwidth de-
mands. A pre-emptive earliest deadline first (EDF)
scheduler is used to determine the route a token fol-
lows in the network. This type of scheduler has the
advantage over other schedulers that it can achieve a
100% utilization. However, in case of overload its per-
formance will degrade dramatically. It is also possible
to employ other schedulers, e.g. rate monotonic.

Every node operates according to the state-
transition diagram in figure 1. This description does
not mention the clock synchronization or detailed de-
scriptions of all possible fault situations. There are
seven states, of which the states activate and dispatch

mailto:hanssen@cs.utwente.nl


Monitor PollTransmit

IdleOff−line

F: Send stop_mon,
send token

Activate

Dispatch

send poll
H: Time−out,

E: Send keep_mon

D: THT expired J: Receive keep_mon

L: Receive never_got_token or time−out

N: Leave RTnet

A: Receive token

K: Receive stop_mon

C: Invalid stream

B: Valid stream
G: Receive stop_mon

M: Join existing RTnet

P: start new RTnet

Fig. 1. State-transition diagram of RTnet

are special. In these two states the node may not stay
any longer than strictly necessary.

A node is the active node when it is the token holder
(in state activate, transmit, or dispatch). When a node
receives the token (transition A), it will check whether
its associated stream is still valid. If not, a reschedule
is necessary (transition C), otherwise the node will
start transmitting (transition B).

The active node may use the network for some time:
the token holding time (THT). The THT is deter-
mined by the scheduler (state dispatch) and is likely
to be different for each stream. Typically the node
will send one frame of a periodic multimedia stream.
Note that our network works with constant-bit-rate
streams; for variable-bit-rate streams several mapping
techniques can be used [3].

The EDF scheduler is distributed over the nodes
and the token contains the shared scheduling infor-
mation for all of them. Each node will keep backups
of the schedule though. If a node has the token and
it wants to add or remove a stream, it calculates a
new schedule and acts upon it. Before a new stream
may be added the node does an EDF feasibility test
to determine if the newly added real-time stream will
meet its deadlines without making other streams miss
theirs. The EDF feasibility test is simple [4]: the to-
tal of bandwidth utilizations by all streams may not
exceed 100%. However, only 80% of network band-
width is dedicated to real-time (multimedia) commu-
nications, the rest is used for non-real-time purposes.
Actually, the maximum bandwidth is slightly less be-
cause of the token transmission and Ethernet packet

overhead.
At the expiry of the THT for a certain stream (tran-

sition D), the scheduler computes the next stream
which may use the network. When the new stream is
on the already active node, it informs the monitor of
this (transition E) and starts transmitting.

When the scheduler at the active node decides that
another node must become active it computes the new
THT, stores the global schedule information in the
token and sends the whole package to the new node
(transition F ). This is a critical action and it should
not occur that the token becomes lost, or worse, dupli-
cated. When a token is lost the schedule is lost too and
the network stalls. Duplicated tokens mean that more
than one node will make schedules and collisions will
occur, causing deadline misses and non-deterministic
behaviour. To correct this kind of misbehaviour the
concept of a monitor is introduced while restricting
the token size to always fit the token in a single net-
work packet.

When the active node relinquishes the token, this
node becomes the monitor for the new active node.
Monitoring is a three step process.
1. The monitor sends the token to the new active
node.
2. This active node is now in the state transmit for the
duration of the THT. While the active node transmits,
the monitor waits for a reply from the active node. It
sets a timer for the duration of the THT.
3. At the end of the THT the active node must send
a reply to the monitor signalling that it is still alive.
This reply can be one of two possibilities.



(a) When the active node needs to keep the token
longer, it will reply with a keep monitoring message
(keep mon) with a new THT. The monitor will reset
its timer and start waiting for a new reply from the
active node.
(b) When the active node needs to forward the to-

ken, it will reply with a stop monitoring message
(stop mon). The old monitor now ends its activity,
the old active node becomes monitor, and the new ac-
tive node begins transmitting. Then the process starts
all over.

Many things can go wrong. When the monitor
times out, it sends a poll (transition H). When the
original reply was lost, it will receive a copy of that
reply (transition J or K). When the token was lost
it will receive a message stating the token was never
delivered (never got token). When nothing is received
after a short wait, the monitor will mark the active
node as dead and remove it from the node list. In
both cases a reschedule is necessary (transition L).

A node starts in the off-line state and will join an
existing RTnet network (transition M) or create a new
one if an RTnet network does not yet exist (transi-
tion P ). To properly leave an RTnet, a node will have
to remove itself from the token when it is the active
node and act as monitor during the next round. Only
after that, when it is idle, it may leave the RTnet and
become off-line again (transition N).

III. RTnet on a microcontroller

The prototype hardware has been designed with
available, cheap components in mind to resemble a
device as it may be built in practice. The main
components are a Microchip PIC 16F877 microcon-
troller [5] and a Realtek RTL8019AS, NE2000 com-
patible, 10Mbit/s Ethernet network interface con-
troller (NIC) [6]. Since the amount of memory inside
the PIC is limited to 368B, 8KiB of serial, non-volatile
FRAM memory [7] was added. An analog tempera-
ture sensor is used for a test application, and an RS232
link was added to provide some debugging facilities.

The block diagram of the device is shown in figure 2.
The number of I/O pins of the microcontroller used for
the various connections is denoted with a slash after
the description. Figure 3 shows the prototype device
as it looks in real life. Note that a standard PC-
style interface card was used for the network interface
controller.

The first version of the device controlled the NIC in
16-bit mode. However, this hardly performed better
than 8-bit mode, as 16-bit data communication has to

sensor
serial programming

interface
10Mbit/s
Ethernet

RTL8019AS
network interface

controller
serial FRAM

memory

RS232
driver

RS232

16F877 PIC
microcontroller

data /8

address /5

control /2
I²C /2

analog /1 SPI /2

SCI /2

Fig. 2. Block diagram of the device

Fig. 3. Visual impression of the prototype

be done in two 8-bit steps. Operating the NIC in 8-
bit mode is only slightly slower than 16-bit mode, but
saves 8 digital I/O pins on the microcontroller, which
can be more useful for certain applications. Also it
is possible to use a cheaper microcontroller with less
I/O pins than the one we used.

The microcontroller is clocked at 20MHz, which
provides us with 5M instructions per second. The
communications with the serial FRAM memory oper-
ates over an I2C bus clocked at 1MHz. This results
in a speed of approximately 100kB/s for continuous
memory read or write operations.

The implementation consists of five parts: the
driver for the NIC, the driver for the serial memory,
a partial RTnet implementation, a partial UDP/IP
stack, and a test application. For debugging facilities
a simple user interface is included, which allows the
device to be controlled over an RS232 link.

RTnet was implemented partially. In particular, the
following parts are not (yet) implemented:
• start a new RTnet if one does not exist;
• acting as monitor for other nodes;



IdleOff−line

Transmit

F: Send stop_mon,
send token

Dispatch

N: Time−out

M: Join existing RTnet

D: THT expired

A: Receive token

E: Send keep_mon

Fig. 4. State-transition diagram of microcontroller imple-
mentation of RTnet

• acting on error conditions and performing network
recovery.
Figure 4 shows the reduced state-transition diagram
for the microcontroller implementation of RTnet.

The NIC driver handles packet reception by polling.
Packets are buffered by the NIC in its on-board mem-
ory. In this way it is not necessary to use the inter-
rupt line of the NIC. Only in two RTnet states the
device is polling: off-line and idle. In the state off-
line only packets soliciting devices to join an RTnet
are accepted, all other packets are discarded. In the
state idle all packets are accepted, unrecognized pack-
ets are silently ignored.

When the device is idle and the token is not received
in time, i.e. within the token rotation time, the device
assumes it is not part of the network any more and
will become off-line (transition N in figure 4). When
a packet is accepted, it will be processed immediately.
Any replies will be queued until the token is received
and the RTnet protocol decides they may be sent.
E.g. the reply to an ICMP echo request (ping) will be
queued for handling during the non-real-time phase of
RTnet.

When a token is received, the device enters the state
transmit (transition A in figure 4) and it will send the
available data for the active real-time stream. Note
that it does not check explicitly if the stream is still
valid. If all data is sent, the state dispatch is entered
(transition D) so a new stream may be selected.

In this state the EDF scheduling algorithm is per-
formed. If the next stream originates from this device,
it will inform the monitor (transition E) and send the
data belonging to this new stream. Otherwise the
token is forwarded to the new active node and the de-
vice becomes idle again (transition F ). Note that in
this situation RTnet functions without monitor for a
while, since our prototype does not implement moni-
tor functionality yet.

The unimplemented states, monitor and poll in par-
ticular, are not hard to implement. They do not re-
quire a lot of processing time or writable memory,
but they do require a fair share of programme mem-
ory. The current implementation requires most of the
available programme memory however, so the addi-
tion of these states would require a fair bit of engi-
neering.

The UDP/IP stack implements only the parts
needed for the application. It supports sending and
receiving IP packets, without support for IP options.
It supports sending and receiving UDP packets, where
the optional checksum field is not being used. It con-
tains a very bare implementation of ARP: only re-
quests for the hardware address of the device’s IP
are answered. It does not generate ARP requests,
it caches the hardware addresses of clients from their
real-time stream requests. Furthermore, it supports
receiving ICMP echo requests and transmitting ICMP
echo replies. The ICMP checksum of the reply is not
calculated, but generated from the checksum of the
request. In some cases this leads to an invalid check-
sum, but these can be ignored.

A. Test application

The test application turns the device into a sim-
ple thermometer. Client applications can request the
device to send them the temperature once per sec-
ond. To do so they send a non-real-time request over
UDP to the device. This will then allocate a real-
time stream to that client with a bandwidth of one
RTnet timeslice (10ms) of network usage per second.
Every measurement from the time of request onwards
will then be sent to the client, none will be skipped
or duplicated. Multiple clients are supported, even
originating on the same node.

Using a timer interrupt the temperature is mea-
sured. They are stored in a small buffer, marked with
a time stamp. They are sent to the clients in fixed-
size UDP packets, with pre-generated headers stored
in the external, serial memory. At most one packet is
sent every period of one second, which leads to deter-
ministic worst-case behaviour.

IV. Advantages and disadvantages of the
implementation

In a small RTnet network the prototype implemen-
tation works very well. The token is processed cor-
rectly and the EDF scheduling algorithm is performed
as it should. Non-real-time requests are processed cor-
rectly and in a timely manner and real-time streams



are served according to demand.
Every packet received is copied to the serial mem-

ory, which operates at approximately 100kB/s. This
means that large tokens cannot be processed within
the 10ms that is allocated to the device. The token
must be processed and the corresponding real-time
data must be sent within the scheduler granularity of
10ms, because the token may have to be forwarded
again to another node after that time.

The worst-case token processing time has not been
extensively analysed. Assuming that processing the
token takes about the same amount of time as copy-
ing it from and to the serial memory, a token of up to
(10ms×100kB/s)/4 = 250B can be processed in time.
But this leaves no time for sending any data, so the
maximum token size is even less. The current imple-
mentation uses a token size of 92B for a network of
two nodes and no additional streams. An additional
node uses 26B and a real-time stream uses 20B of to-
ken space, so our prototype can handle a network of
about four nodes with a few real-time streams.

Other large packets, such as large ICMP echo re-
quests may also result in timing constraint violations.
These violations may lead to elimination of our micro-
controller device from RTnet by the active monitor,
leading to disruption of service. The problem caused
by large non-real-time packets can be avoided by in-
specting the packet size before copying it to the serial
memory. But the token has to be copied in order to
be processed. On the current prototype we have no
solution for this. The only possible solution may be
in different use of the on-board memory of the NIC.

The current implementation occupies almost all of
the available programme memory on the microcon-
troller. Size-optimized code, with fewer debugging
possibilities, may leave more room for a more com-
plete implementation of the RTnet protocol and a dif-
ferent application. In the available programme mem-
ory it will, however, be hard to fit a complete RTnet
implementation together with a reasonable applica-
tion.

A. Solutions

The obvious solution for the timing problems of the
current prototype is to use a microcontroller with a
possibility of connecting directly addressable mem-
ory, instead of the serial memory operated over a slow
I2C bus. Another solution is the use of a microcon-
troller with more internal memory. Since a token will
never grow larger than an Ethernet packet, which is
1500B, a memory capacity of 2KiB should be enough

for an RTnet implementation. We estimate that a
bandwidth of at least 600kB/s is needed towards the
memory and the same bandwidth towards the NIC to
build a workable RTnet implementation on a micro-
controller with comparable execution capacities. For
an efficient RTnet implementation a microcontroller
with somewhat more bandwidth towards memory and
NIC is needed.

Another solution is to not let the microcontroller
operated nodes act as full participants in the RTnet
network. Allowing them to delegate their work to a
more powerful node results in a simple client-server
setup and the ability to use cheaper, less powerful mi-
crocontrollers. Such a delegation may be implemented
in two possible ways.

The first delegation solution is an implementation of
the delegation at application level. In order to make
this viable the host application on a powerful node
needs some way of knowing which client devices there
are and what bandwidth requirements they need. The
host may then allocate this amount of bandwidth for
itself. Whenever the host obtains the token for this
stream, it can inform the client with a single packet
command that it may transmit its data for a certain
amount of time. This requires the client to not par-
ticipate in RTnet at all and to respond and complete
its actions within one scheduler timeslice to avoid pre-
emption. The client must then never send a network
packet on its own, since this could disrupt RTnet op-
eration.

The other delegation solution is an implementation
at RTnet protocol level. This creates two types of
RTnet nodes: “normal” and “light” ones. The “light”
ones will associate themselves with a “normal” node,
which will act on their behalf in all network commu-
nication matters. The main difference between this
delegation solution and the previous one is that the
network handles light devices in a transparent and
standardized manner, which eases application devel-
opment. However, this complicates the RTnet proto-
col.

V. Conclusions

It has been shown that it is possible to create a
working partial implementation of RTnet on a micro-
controller and run an application on top of it. How-
ever, it cannot support a large network, mainly be-
cause of the limited memory bandwidth on the de-
vice. For a full RTnet implementation a microcon-
troller with a memory bandwidth of at least 600kB/s
is needed.



The best solution for the use of microcontroller op-
erated devices in an RTnet is probably the use of del-
egation. The more complex tasks can then be taken
over by a more powerful node in the network. There
are many ways to do delegation, so there is much re-
search still needed in that area. And it is a real chal-
lenge to design a delegation protocol which does not
compromise the simplicity of the RTnet protocol.

References

[1] IEEE Standard for Information Technology—
Telecommunications and Information Exchange between
Systems—Local and Metropolitan Area Networks—Specific
Requirements—Part 3: Carrier Sense Multiple Access
with Collision Detection (CSMA/CD) Access Method and
Physical Layer Specifications, Institute of Electrical and
Electronics Engineers, 2002, IEEE Std. 802.3-2002.

[2] “Rether web site,” http://www.ecsl.cs.sunysb.edu/rether/.
[3] S. V. Anastasiadis, K. C. Sevcik, and M. Stumm,

“Server-based smoothing of variable bit-rate streams,”
in Proceedings 9th ACM Multimedia Conference, Ottawa,
Canada, Oct. 2001, pp. 147–158. [Online]. Available:
http://www.acm.org/sigmm/mm2001/ep/anastasiadis/

[4] C. L. Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard real-time environment,” Jour-
nal of the ACM, vol. 20, no. 1, pp. 46–61, Jan. 1973.

[5] “Microchip PIC 16F877 web site,” http://www.microchip.
com/.

[6] “Realtek RTL8019AS web site,” http://www.realtek.com.
tw/search/search.aspx?search=RTL8019AS.

[7] “Ramtron FRAM web site,” http://www.ramtron.com/
doc/AboutFRAM/overview.asp.

http://www.ecsl.cs.sunysb.edu/rether/
http://www.acm.org/sigmm/mm2001/ep/anastasiadis/
http://www.microchip.com/
http://www.microchip.com/
http://www.realtek.com.tw/search/search.aspx?search=RTL8019AS
http://www.realtek.com.tw/search/search.aspx?search=RTL8019AS
http://www.ramtron.com/doc/AboutFRAM/overview.asp
http://www.ramtron.com/doc/AboutFRAM/overview.asp

	Introduction
	Operation of RTnet
	RTnet on a microcontroller
	Test application

	Advantages and disadvantages of the implementation
	Solutions

	Conclusions

