
Real-time communication protocols: an overview∗

Ferdy Hanssen and Pierre G. Jansen

October 2003

Abstract

This paper describes several existing data link layer protocols that provide
real-time capabilities on wired networks, focusing on token-ring and Carrier
Sense Multiple Access based networks. Existing modifications to provide better
real-time capabilities and performance are also described. Finally the pros and
cons regarding the At-Home Anywhere project are discussed.

1 Introduction

In the past twenty-five years several different, wired networks have been designed and

built. But not all of them are dependable, i.e. suitable for accomodating real-time

traffic, or traffic with Quality of Service (QoS) requirements. Some were designed

with QoS in mind, some had QoS added as an after-thought, and some do not

support QoS requirements at all.

The most popular wired network architecture used to date, IEEE 802.3 [46], pop-

ularly called Ethernet1, does not provide any support for real-time traffic. There

are no provisions to reserve bandwidth for a certain connection. Nodes access the

network using the CSMA/CD (Carrier Sense Multiple Access with Collision Detect)

technique [70]. The CSMA/CD algorithm does not define a collision resolvance

protocol of its own. Ethernet uses the BEB (Binary Exponential Back-Off) algo-

rithm. This algorithm resolves collisions in a non-deterministic manner, while the

first requirement for a network to be called real-time is determinism.

The most popular real-time network architecture, Asynchronous Transfer Mode

(ATM), is used mostly for internetwork links these days. ATM provides high band-

widths and QoS guarantees, but has proven to be too expensive for use as a lo-

cal area network. For industrial applications there are communication networks

∗This work is sponsored by the Netherlands Organisation for Scientific Research (NWO) under

grant number 612.060.111, and this work is supported by the IBM Equinox programme.
1This paper will use the term Ethernet throughout for networks adhering to the IEEE 802.3

standard.

1



with deterministic Medium Access Control (MAC) layers, like Process Field Bus

(PROFIBUS) [88], Factory Instrumentation Protocol (FIP) [31], and Controller Area

Network (CAN) [47].

The token-bus network IEEE 802.4 [42] is no longer an IEEE standard, but

contains some useful concepts, so it will be mentioned briefly. The token-ring net-

work IEEE 802.5 [44] still is an IEEE standard, but its use is declining in favour of

IEEE 802.3 based networks. The “improved version”, known as Fiber Distributed

Data Interface (FDDI) [6–9], provides useful concepts, but is also considered too

expensive for use as a local area network. Both provide useful insights and will be

discussed in some detail.

In this paper we are going to look at wired local area network architectures,

which provide support for real-time traffic. We focus on the medium access layer,

where token-ring networks will be discussed, followed by the token-bus network, field

control buses and finally various approaches to making Ethernet real-time. All net-

work types will be briefly explained, and their advantages and disadvantages with

regard to the At-Home Anywhere project (lHA) will be discussed. Important net-

work aspects with regard to the lHA project are real-time capabilities, component

simplicity, and component cost. The higher layers of the protocol stack will also be

discussed briefly.

2 Token-ring networks

IEEE 802.5 and FDDI are both ring-shaped networks [38], as depicted in figure 2.1.

Both employ a token –– a special kind of network frame –– to regulate network access

of the individual nodes. This token flows from node to node (figure 2.2), and each

node may transmit a message only when it has acquired the token. The main

difference between IEEE 802.5 and FDDI networks lies in the rules, which dictate

when a node may acquire a token, and for how long.

2.1 IEEE 802.5

A token-ring network, as defined in the IEEE 802.5 specification [44], which evolved

from the IBM token-ring network [97], makes use of a priority scheme for token

acquirement. The token circulates around the ring, and a node which has data to

transmit seizes the token. This is done by modifying the token bit, which indicates

whether the network packet is a token or a frame. Then the frame control fields,

such as source and destination, and the data is appended, together with anything

else needed to create a valid network frame. This frame then circulates the ring. The

destination node copies the data in the frame, for use by its applications, but still

2



321

6 5 4

Figure 2.1: Ring architecture

321

6 5 4

Figure 2.2: Token-ring network with flow of token

forwards the frame. When the frame returns to the initiating node, it is removed

from the network. The amount of data which may be transmitted by a node when it

has hold of the token, is limited by a token holding timer. If a node’s transmission

queues do not contain any more data to send, a new token is generated which is

then sent onto the ring.

To be able to support different classes of network traffic, IEEE 802.5 has the

option of assigning priorities to messages. Each data frame and token contains three

bits for priority, thus providing eight levels of priority. A node may only seize the

token if it has data to transmit at a priority level, which is at least equal to the

priority of the frame currently travelling the network. And all data transmitted

during the capture of the token, may only be of equal or higher priority than the

priority of the token.

Additionally, each data frame and token have a field indicating the highest pri-

ority of any node in the ring. These reservation bits are inspected each time the

frame passes a node. If this node has data to transmit with a priority higher than

the current reservation, the reservation bits are updated to match the priority of

the data the node wants to send. In this way the node requests the next token to

be issued with a priority equal to the priority of the data it has waiting at the head

of its queue. When the token returns to the node with the highest priority, it may

access the network medium and transmit its data.

If a node issues a token with a priority higher than the preceding token, it be-

comes responsible for making sure that a token with the lower priority of that preced-

ing token will be released on the network at some later point in time. IEEE 802.5

token-ring networks restrict fairness to messages with the same priority. Lower-

3



priority packets may experience starvation, which is caused by large amounts of

higher-priority packets waiting in the transmit queues on the various nodes.

IEEE 802.5 token-ring networks are defined for two operating speeds: 4 Mbit/s

and 16 Mbit/s. At the higher speed the feature of early token release is supported,

which means that a node may release a token as soon as it has transmitted its last bit.

It does not have to wait for the last frame to completely traverse the ring. Early token

release increases the available bandwidth and improves data transmission efficiency

when the frame is shorter than the ring latency. But access delays for higher-priority

traffic may increase when a very high load of short frames is placed upon an early-

token-release enabled network.

Strosnider et al. [98] proposed a different method for scheduling the IEEE 802.5

token-ring network that not only guarantees deadlines for the synchronous traffic,

but also reduces the response time for asynchronous traffic. They apply a scheduling

approach which is based on algorithmic techniques, so schedulability decisions can

be made on arbitrary message sets. The costly tuning of network parameters is

then no longer needed. Their approach allows IEEE 802.5 to be deployed in flexible

environments, where the network is both real-time and responsive for non-real-time

traffic.

Sathaye and Strosnider [93] have examined scheduling models for both early

token release and normal token release on IEEE 802.5. They found that the max-

imum bandwidth utilization of both protocols is the same when the packet size is

not smaller than the time needed for a signal to circulate the ring, but that using

early token release can significantly improve bandwidth utilization. But the early

token release protocol has a larger blocking component than the other, which can

hurt performance when a large number of nodes with relatively long deadlines and a

few nodes with short deadlines are present. The large amount of blocking incurred

by the early-token-release mechanism then will probably cause deadline misses for

packets with a short deadline.

Ng and Liu [77] simulated a token-ring network, where a high-speed network

is split into multiple low-speed subnetworks, which should increase the effective

network bandwidth and decrease the response time. Also the cost of a network

should go down when this is done, as low-speed interface hardware is an order of

magnitude less expensive as high-speed interface hardware. Then even several low-

speed rings do not cost as much as one high-speed ring. Their topology is built such

that every node is connected to a subset of rings: station i is connected to subrings

{(j − i) mod K|j ∈ [0, 1 . . . dK−1
2 e]}, where K is the number of subrings. This so-

called staircase topology requires a smaller number of node-network connections,

but has a performance which is comparable to the fully connected protocol as long

as the source stations are not highly localized and the destinations are equally likely

to be in any subnet.

4



2.2 FDDI

The important difference between IEEE 802.5 token-ring networks and FDDI net-

works lies in the handling of the token. Where IEEE 802.5 employs a priority

token, FDDI makes use of a timed token protocol, derived from the protocol defined

by Grow [35, 36] and Ulm [105]. Some introductory texts on FDDI are given by

Ross [89–91].

The time it takes a token to circulate the ring is controlled. The token has

to adhere to the Target Token-Rotation Time (TTRT), which is defined when the

network is initialized, accounting for the maximum propagation time of the entire

ring, the time required to transmit a maximum length frame, the time required to

transmit a token, and the sum of all the synchronous allocations of all the nodes.

Synchronous allocations are the amount of bandwidth a node wishes to use for

transmitting synchronous, or stream data. FDDI also supports the asynchronous

data type, to be used for bursty, or best-effort data.

The timed token protocol of FDDI makes use of a Token-Rotation Time for each

node i (TRTi), a Token-Holding Time for each node i (THTi), and a Late Counter

for each node i (LCi). Also known are the Target Token-Rotation Time (TTRT)

and the synchronous capacity Hi for each node i, which represents the maximum

amount of time a node may transmit synchronous traffic.

The protocol operates as follows [18]. When the ring is initialized, THTi and

LCi are set to 0 and TRTi is set to TTRT for all nodes i. The TRTi timer always

counts down; as it reaches 0 it is reset to TTRT and LCi is incremented with 1.

Normally, when LCi > 1, the ring recovery process is started [51].

A token is considered early when LCi = 0 when the token arrives, otherwise it

is considered late. At early token arrival, the following takes place. THTi is set

to TRTi, TRTi is reset to TTRT, and synchronous frames can be transmitted for

a maximum duration of Hi. Finally timer THTi is enabled, and it starts counting

down. As long as THTi > 0 ∧ TRTi > 0 asynchronous frames may be transmitted.

When the token is late, however, the following will occur. LCi is set to 0, and

TRTi continues to count down to 0, it is not reset to TTRT. Now synchronous

frames may be transmitted for a maximum duration of Hi, and no asynchronous

frames will be transmitted.

FDDI supports the notion of a double-ring network: a primary ring and a sec-

ondary ring with counter-rotating traffic (figure 2.3). Contrary to IEEE 802.5, where

the secondary, backup ring can only be activated manually, FDDI supports auto-

matic fault recovery using the second ring. When a fault occurs in the main ring,

this is detected and the backup ring is used to continue operation (figure 2.4).

Sevcik and Johnson [52,95] first proved that the maximum token rotation time in

FDDI is two times the TTRT, later Chen and Zhao [19] proved that the maximum

5



token direction

token direction

321

6 5 4

Figure 2.3: Token-ring network with a double ring

321

56 4

✖

Figure 2.4: Token flow on a broken, double-ring network

time that can elapse between any v token arrivals (v ≥ 2) at a node i will not exceed

(v− 1) ·TTRT+
∑n

h=1 Hh −Hi +a, where Hj is the synchronous capacity allocated

at node j and a is the portion of the TTRT that is unavailable for synchronous

messages. Recently Zhang et al. [117] have given a formal proof of an even tighter

upper bound of this maximum time between token arrivals at a single node. For

hard real-time purposes it is important to know that any periodic stream k with a

period Pk, where Pk ≥ 2 · TTRT, can be served on an FDDI network.

Dykeman and Bux [28] have shown a fundamental property of FDDI: there exists

a tradeoff between efficiency and effectiveness. They have shown that the maximum

total throughput remains high when the TTRT is large compared to the ring la-

tency. But the total throughput may be severely limited when just one application

requires a very short transmission delay. Even if this application is rarely active, the

TTRT has to be set to one half of the maximum acceptable delay. This increases

the bandwidth needed for circulating the token, and thus decreases the bandwidth

avaliable for data.

A useful performance metric for networks is the Worst-Case Achievable Utiliza-

tion (WCAU): the higher this is, the more useful data can be pumped around the

network. For FDDI the WCAU depends on the allocation scheme of the synchronous

capacity at each node. Several allocation schemes have been proposed by different

groups [1, 18, 116, 122] which provide WCAUs of 33% [1, 122] and 40% [18, 116], all

under the assumption that all synchronous traffic uses deadlines equal to its pe-

riods. Zhang et al. [118] later proposed an allocation scheme which allows more

messages sets to be scheduled than their earlier work [116]. Recently Buzluca and

Harmancı [16] have proposed an allocation scheme which adapts better to dynamic

6



environments, but in order to do this they need a small amount of global infor-

mation, whereas the previously described allocation schemes need only information

which is local to the node.

All the allocation schemes mentioned above assume a TTRT is chosen that is as

large as possible, to maximize the overall usable bandwidth. Malcolm and Zhao [66,

67] and Hamdaoui and Ramanathan [37] showed that a much higher WCAU can

be reached, when the TTRT is chosen to be the optimal value for the synchronous

traffic offered to the network, related to the minimum deadline of said traffic. They

showed that a higher minimum deadline will lead to a higher WCAU. However, in

an environment where the synchronous traffic changes regularly, the optimal TTRT

changes with it. But the TTRT is set at network initialization, so this would require

the FDDI network to be reinitialized every time a synchronous stream is added,

removed or changed.

If an absolute guarantee that all messages deadlines are met is not necessary,

Kamat et al. [53] have developed a method of calculating the guarantee probability

that all deadlines will be met, given the synchronous message set utilization. If

the absolute guarantee that no messages are lost is important, Malcolm et al. [65]

developed tests to make sure whether message loss can occur.

2.3 IEEE 802.4

The IEEE 802.4 standard is different from the previously discussed token-ring net-

works, as this employs a logical ring upon a bus network. It has been withdrawn

as an IEEE standard, and is, to our knowledge, no longer or hardly in use today.

The protocol used to guide the token is in principle the same as in FDDI: the timed

token protocol.

A bus network, as seen in figure 2.5, is transformed into a token-ring network,

by letting a token run through the network, cyclically from node to node, in a

predetermined order, as shown in figure 2.6. A node may only transmit when it has

the token, so collisions on the bus are avoided. When a node gets hold of the token,

it may transmit for a specified duration. Each node keeps track of the amount of

time elapsed between tokens. This is done by using a timer, which is started when

a token is received and keeps running until the next token arrival.

Four data classes are defined, ordered to priority. They are numbered 6, 4, 2,

and 0. This scheme was designed to send higher-priority (i.e. class 6) data first

and only then lower-priority data, when enough bandwidth was left on the network.

With each data class a constant is associated. Class 6 data is associated with THT,

the token holding time, this is the maximum duration any node may use to transmit

class 6 data. Data in class 4 to 0 is associated with TRT4, TRT2, and TRT0

respectively. It holds for each of these constants that TRTj is the maximum time

7



4 5 6

321

Figure 2.5: Bus architecture

4 5 6

321

Figure 2.6: Token-bus network with flow of token

that may be used for token rotation, which will still allow transmission of class j data.

Pang and Tobagi [81] have shown that this timing mechanism functions correctly

under heavy load.

Montuschi et al. [74] have derived the maximum duration of a complete token

cycle. They have shown that the mean token rotation time is Ta and that the

maximum token rotation time is Ta + H. Here Ta is the maximum of all values for

TRT4, TRT2, and TRT0 of all nodes, and H is the sum of all values for THT of

all nodes. These values are useful to determine the values for the different network

parameters that are needed to create a network that provides good responsiveness

and throughput.

Moon et al. [76] have studied the IEEE 802.4 network when it is used in a noisy

environment. They found that the token is easily lost in certain noisy environments

and that the time of recovering the network from such a situation is considerable.

Token loss is the major reason for performance degradation of an IEEE 802.4 net-

work.

Cheng et al. [22] enhanced the token bus protocol to make it more suitable for

multimedia applications. They proposed not to let the token traverse the network in

a fixed order, but to let the token visit certain nodes more than once during a token

cycle. This was done to let each node have a token visit cycle which is different from

the others. So nodes that have real-time data with a higher periodicity or that need

to access the network more frequently for another reason, will also see the token more

frequently. A central network manager takes care of the token visiting arrangements

and makes sure all nodes know about them. Thus each node knows when to expect

the token next, and each node can request a different token frequency to account

for newly arrived or deleted streams.

8



2.4 Performance of the token protocols

For any network using the timed token protocol, choosing the proper values for the

various TRTs is difficult, and depends on the actual network setup. According to

Valenzano et al. [106], it is important to tune these values well, as their results

show little difference between the values under worst-case assumptions and under

best-case assumptions. Jayasumana [49] developed a model to determine the timer

values for the IEEE 802.4 network, and Montuschi et al. [75] presented an analysis

to determine the minimum requirements for the values of the THTs and how to use

these theoretical results to tune the network performance.

Colvin and Weaver [24] looked at the message delay versus the network utilization

for the IEEE 802.4 network, and found that the mean delay increases exponentially

with the utilization when the utilization is less than approximately 0.6, and that the

mean delay increases more than exponentially when the utilization is larger than

this. They also found that the mean delay of the synchronous messages is larger

than the mean delay of the asynchronous messages.

Jayasumana and Werahera [50] developed an analytical model to evaluate the

throughput of an FDDI network in the presence of multiple classes of traffic. Their

simulations coincide with the model, and show that the guaranteed throughputs for

each of the classes depend on the chosen TTRTs for each class. It is possible that,

given certain TTRTs, the guaranteed throughput of a lower priority class can be

higher than that of a higher priority class. They also show that the message delay

for each class increases gently up to the overload point, where the delay starts to

increase more than exponentially.

Chen and Bhuyan [20] improved performance by building a network of multi-

ple rings. They presented analyses for three kinds of protocols for a multiple ring

network: one queue per ring with simultaneous transmissions, a single queue for all

rings with simultaneous transmissions, and a single queue for all rings with single

transmission. Simultaneous transmissions means that a node may capture more than

one token simultaneously, single transmission means that a node may capture only

one token at a time. Their simulations agree with their analyses with an error of at

most 10%, showing that multiple ring networks provide almost linear performance

increases in transfer time with the number of rings, up to four rings, and that their

single queue for all rings strategies work better than the one queue per ring strategy,

where the single queue with simultaneous transmissions protocol is slightly better

than the single queue with single transmission protocol.

Timed token protocols do not guarantee the token to arrive at each node at the

beginning of a period. Choo and Kim [23] proposed an approach where the token

arrives exactly at the beginning of the requested period, enabling reliable periodic

communication. Every node may transmit for at most as long as its THT. When

9



that amount of time is not needed, it adds to the token the amount of time not used,

which can then be used by the next token for transmitting non-periodic messages.

Their approach guarantees a minimum period of 1 · TTRT, where TTRT is set to

the sum of the bandwidth allocations of all nodes.

3 Broadcast networks

Broadcast networks are typically set up as a shared-bus network, where any node

can talk directly to any other node or all other nodes. The best-known example of

such a network is Ethernet, which is widely being used in the world today. Current

Ethernet networks operate at a speed of 10 Mbit/s or 100 Mbit/s and can typically

be found in home and office environments. Ethernet networks which operate at

1000 Mbit/s are beginning to be used in data and network centres. There have

been and there still are people working on creating deterministic Ethernet networks,

enabling it to be used for real-time purposes [5].

Ethernet uses CSMA/CD with BEB to resolve concurrent medium accesses,

which makes proper real-time guarantees for network messages impossible. When

two or more nodes decide to transmit a message almost simultaneously, i.e. within

a slot time2, a collision occurs on the network. The BEB algorithm can take up to

7151 slots time before the packet is delivered or returned as non-deliverable. This

equals 366 ms for a 10 Mbit/s Ethernet network.

The BEB protocol operates as follows. Each node maintains a collision counter

c, which is set to zero initially and after each succesful transmission. Whenever a

collision is experienced, c is increased with one, until the maximum 16 is reached,

when a message is marked non-deliverable. A back-off time b, chosen from the

uniformly distributed range [0, 1 . . . 2min(c,10) − 1], is then used to wait for b slots

before the next transmission of the same packet is attempted.

The average message delay increases linearly as the amount of traffic increases,

according to the measurements of Boggs et al. [13]. However, to deterministically

send messages, one would have to make worst-case assumptions. But the maximum

waiting time is so unrealistically large and occurs so rarely that this is not a feasible

option. Several techniques have been developed to enable broadcast networks, and

Ethernet in particular, to support real-time network traffic.

The most simple approach to have some guarantees on a bus network is by using

a TDMA (Time Division Multiple Access) approach. Here every node has a pre-

allocated amount of time to transmit its packets. The bus is then only ever in use by

at most one node, thus rendering a collision-free network with predictable timing.

2A slot time is 512 bit time (e.g. 51.2 µs for a 10 Mbit/s Ethernet and 5.12 µs for a 100 Mbit/s

Ethernet) [13].

10



The main disadvantage is the inflexibility, everything has to be pre-allocated. Nodes

that do not have any packets to send, will still reserve the network for their allocated

share, bringing down the efficiency of it all. Also it is hard to efficiently accomodate

for nodes joining and leaving the network. This technique has been used in practice

as the basis for some real-time communication protocols, specifically in the Mars

project [56].

3.1 Constraining generated traffic

Providing some guarantees on bandwidth on a network can also be achieved by

putting contraints on the traffic generated by the nodes. There are three classes of

methods to do this, without making changes to the Ethernet protocols. The traffic

smoothing approach [58, 59] uses a statistical method to bound the medium access

time by limiting the packet arrival rate at the MAC layer. Thus non-real-time traffic

bursts are smoothed, they are spread out over a longer time period, to allow real-

time traffic on the network as it arrives. The virtual time and window protocols will

be discussed next.

3.1.1 Virtual time CSMA

Virtual time protocols implement a packet release delay mechanism. First proposed

by Molle and Kleinrock [73], the protocols work as follows. Each node has two clocks,

one gives the real time, the other gives the virtual time. When the channel is idle,

the virtual clock is running, and it stops running when the channel is busy. When the

virtual clock runs, it runs at a higher rate than the real one if it is behind. A message

is sent only when its arrival time is equal to the time of the virtual clock. Zhao and

Ramamritham [120] describe several virtual time CSMA (Carrier Sense Multiple

Access) protocols, in which the virtual clocks differ. The original virtual time CSMA

protocol uses the arrival time to determine when to transmit a message. Zhao and

Ramamritham [119] proposed a variant which uses message laxity to determine when

to transmit. In their 1987 paper [120] they proposed two other variants: transmitting

messages with the earliest deadline first and transmitting messages with the shortest

length first.

Zhao and Ramamritham used the following collision resolution algorithm in their

simulations. When a collision occurs, the sender node i either retransmits the mes-

sage immediately with a probability Pi, or modifies the virtual time to start trans-

mission of the message to a random number drawn from a range chosen specifically

for each protocol variant, after which the message is put back in the queue of mes-

sages waiting to be transmitted. Their simulations showed that all four variants

are insensitive to the number of nodes in the network and the protocols perform

better than those with a straightforward collision resolution algorithm. All variants

11



are sensitive to the rate of the virtual clock when the load is not very light. But,

except for cases of extreme network overload or a very large normalized transmission

delay3, there always exists a wide range of virtual clock rates in which each variant

has optimal or close to optimal performance.

With light to medium load all four variants perform similarly, but in high load

their performance differs. The original virtual time CSMA protocol performs poorly

in the message loss and effective channel utilization ratio, but is not biased towards

messages based on length or causes too much collisions. The laxity variant performs

best in terms of effective channel utilization, but it performs poorly in terms of

message loss. The shortest-length-first variant performs well in terms of message loss,

but has the worst channel utilization and the worst collision strategy of all four. The

minimum-deadline-first variant has the best performance when it comes to message

loss and collisions, but is biased towards short messages, as is the previous one.

Therefore its channel utilization is not as good as that of the laxity variant. Zhao and

Ramamritham concluded there is no variant that outperforms the others, but that

the laxity-based and the minimum-deadline-first variants are to be recommended for

hard real-time communications.

Recently Salian et al. [92] improved on the minimum-deadline-first variant to

support both hard real-time and soft real-time messages. Their variant reserves

time slots for hard real-time messages, and their experiments, carried out with a

simulation written in OMNeT++ [80], showed that all hard real-time messages are

transmitted for all load conditions. Soft real-time messages have to be sacrificed to

make this possible, but the percentage of soft real-time messages dropped does not

deteriorate as much as compared to the minimum-deadline-first variant.

El-Derini and El-Sakka [29] proposed a virtual time CSMA variant which puts

message priorities in the picture. Messages belong to one of two priority classes,

where higher-priority messages will be given precedence when sending. A node with

high-priority messages sends a reservation signal on the network. If this signal does

not cause collisions, it is the only one with high-priority messages and transmits

them. If it does collide, all nodes with high-priority packets use the normal virtual

time CSMA protocol to transmit only the high-priority messages. When no reser-

vation signal is present, low-priority messages may be transmitted. Their protocol

has a lower overall throughput than the original virtual time CSMA protocol, but

it behaves better for high-priority packets than the original one.

Molle [71] improved the original protocol, allowing for a certain number of pri-

ority classes. He uses a virtual clock for each priority class. Messages of the highest

priority class are scheduled to be sent first, until they run out or its virtual clock

catches up with real time. Then the next-lower-priority-class messages are sched-

3The normalized transmission delay is defined as the maximum end-to-end delay divided by the

mean message length.

12



uled to be sent, and so on. Within a class messages are scheduled according to

First Come First Served (FCFS). His simulation results indicate the performance

of this prioritized virtual time CSMA protocol compares very favourably to other

prioritized CSMA protocols [61,78,100].

3.1.2 Window protocols

Gallager [33] first proposed a window protocol, in which the enabled set of stations

are those that have messages in the queue which were generated during some interval,

or window. All nodes have a network-wide knowledge of the packets waiting to be

transmitted. The protocol operates roughly as follows [57,68]. If only one node has

a message in the window, that message is sent. If several nodes have a message in

the window, the window size is reduced until only one node with a message in the

window remains. Then, if there are no nodes with a message in the window, the

window is shifted further along the time axis. Management of the window is the

responsibility of the access arbitration process.

The traditional window protocol, as proposed by Gallager, has been modified to

allow implementation of Minimum Laxity First (MLF) or other policies, in order to

make it suitable for real-time applications. Zhao et al. [121] based the window on the

latest time to send a message to make it meet its deadline. Their window protocol

immediately considers a newly arriving message for transmission if its latest time

to send is less than that of all pending messages in the system. Thus their protocol

closely approximates the optimal MLF policy. Simulations showed their protocol to

perform well, even under overload.

Znati [124] built a simulation of a window protocol which implements the MLF

strategy. He describes what needs to be done when two or more messages have the

same laxity. This results in a collision, which is resolved by having each node select a

contention parameter, based on its latest time to send and its position in the logical

ring, in which all nodes have been placed for this protocol. Each node will select a

unique contention parameter, which will be used to determine which node may send

its message first. He proved that the contention-parameter selection preserves the

MLF policy.

3.2 RETHER

The real-time network RETHER [109–111], developed at the State University of

New York at Stony Brook, is based on Ethernet. It uses a token-based technique

to regulate access of all the nodes to the network. This circumvents the danger

of collisions inherent to the CSMA/CD protocol employed on Ethernet networks.

And collisions are resolved in a non-deterministic way on Ethernet, where the BEB

algorithm is used for this.

13



RETHER is essentially a token-bus network. But the token does not follow

a simple circular path through the network. The token is guided according to a

certain schedule. First the token flows to all nodes which have real-time traffic to

send. Next the token will flow from node to node in a circular fassion, to allow each

node to transmit its non-real-time packets. This circular path is interrupted as soon

as the schedule dictates a node’s need for transmitting real-time traffic. After this

round of real-time traffic the token is again forwarded to the node which was next

in line for transmitting non-real-time traffic, and the token continues its round for

non-real-time traffic from there.

When there are no nodes with real-time messages to send, the RETHER network

protocol operates in CSMA/CD mode, just like Ethernet. The first node, the so-

called initiator, that wants to transmit real-time traffic, broadcasts a special message,

indicating it wants to switch to the token mode. It then waits for all nodes to respond

to this message, indicating their switch to token mode, before generating a token,

transmitting its real-time message and forwarding the token to the next node in the

network.

Multiple initiators are handled by letting the initiator with the smaller identifi-

cation number have priority over the others. Node failures mean the initiator does

not receive the expected amount of acknowledgements from the other nodes within

a certain, predefined time. This is handled by asking the non-responding nodes to

acknowledge the transition to token mode again. Nodes that do not respond then

will not be added to the list of live nodes in the token.

When no more real-time traffic is present from any node, RETHER will switch

back to CSMA/CD mode. This is done by letting the node which terminates the

last real-time stream, broadcast a special message. No acknowledgements are used

in this case. Any node which does not receive this broadcast, will eventually switch

back to CSMA/CD mode automatically. This is controlled by a timer. This timer

counts down from a time value set larger than the longest time between token visits

and when zero is reached the switch is made.

A similar idea was already proposed by Gopal and Wong [34] earlier. They

proposed a hybrid token-CSMA/CD network. In this network collisions are resolved

as usual by all nodes on the network, except the node which has the token. This node

disables its collision resolution algorithm, and retransmits its packet immediately

when the network becomes available, i.e. when the collision detection signal has

disappeared. It does not wait for a random time as all the other nodes do, so it gets

priority in the collision resolution. The token travels between the nodes on a logical

ring. Their protocol, however, does not provide any real-time guarantees. But their

hybrid protocol is better than plain CSMA/CD, and it is better than the token-

ring protocol with light load. With heavy load their hybrid protocol approaches the

performance of the token-ring protocol.

14



repeater

Figure 3.1: Ethernet bus architecture

hub/switch

hub/switch

hub/switch

Figure 3.2: Ethernet star architecture

3.3 Switched real-time Ethernet networks

Modern Ethernet networks are more and more being built using switches instead of

hubs or coax cabling. Coax cabling is used to build a traditional bus network, with

repeaters interconnecting two buses, as in figure 3.1. Hubs and switches create a

star-like network, as in figure 3.2. The difference between switches and hubs is the

intelligence. Hubs simply pass on incoming traffic on any port to all other ports,

whereas switches learn the topology of the network, i.e. where all the nodes are

situated. When a packet, destined for a certain known Ethernet address, arrives, it

is sent only to the port behind which the switch knows that Ethernet address to be

residing.

In a star-like network layout every node is connected with a private cable to

a switch. When Universal Twisted Pair (UTP) cabling is used, there is a private

cable for each direction. Then collisions can no longer occur on any network cable.

This can be used to an advantage when providing QoS guarantees. The real-time

capabilities can now be embedded inside the switch. Present-day switches employ

a technique called store-and-forward to transfer packets from one port to another,

using per-port buffers for packets waiting to be sent on that port. But congestion

may occur here, when one node is suddenly receiving a lot of packets from the other

nodes. Current switches do not provide any guarantees as to which packets will be

sent first. Recent research by Pedreiras et al. [85] shows that switches may behave

erratically when high-priority packets are dropped due to a lack of memory capacity.

The EtheReal switch from Varadarajan and Chiueh [107] solves this by includ-

15



ing a bandwidth reservation scheme inside the switches. Another design goal of

them was to not change the standard operating systems in the nodes. They use a

specialized library which the applications needing real-time services can use. This

library connects to a special daemon process running on the node, which commu-

nicates with the switch to set up real-time connections. Special proxy IP (Internet

Protocol) and Ethernet addresses of the forms 1.1.x.y and ff:ff:ff:ff:xx:yy,

respectively, are used for real-time streams on all links from source to destination

node, except the final link from the last switch to the destination. The receiving

nodes are not involved in the connection set-up with EtheReal, and standard UDP

(User Datagram Protocol) is used to transmit any real-time stream data.

EtheReal supports automatic fault detection and recovery. Varadarajan and

Chiueh [108] have shown an approach in which the effect of network faults is localized

to only the affected nodes and switches, without service interruption in other, non-

affected parts of the network. They use periodic polls to check for availability of

switches. When a network topology change is detected, the switches build a new

spanning tree of the network, after which all network traffic to reachable nodes is

continued. Their performance measurements show acceptable detection and recovery

times for a real-time network.

Another, similar, approach is being taken by Hoang et al. [39–41]. They also

provide a switch with bandwidth reservation capabilities. But they do not build

their node software layer on top of IP, but underneath it, on top of the Ethernet

MAC layer. And they use Earliest Deadline First (EDF) [63] scheduling inside the

switch, to make decisions as to which packets are forwarded first. This provides

guarantees for both bit rates and delivery deadlines. The added real-time layer in

the nodes enables applications to reserve real-time channels on the network, subject

to a feasibility analysis. In this way they guarantee bandwidth for real-time traffic.

Unfortunately the paper is not clear whether their approach supports a network

consisting of multiple switches, as EtheReal does.

3.4 Other approaches

Court [25] created a deterministic Ethernet network by using a collision avoidance

technique. He classifies collisions into two categories. The first type occurs when two

or more nodes simultaneously check the bus, find it idle, and transmit a packet. The

second type occurs when two or more nodes detect a busy network, wait until it is

idle, and then start transmitting their packets. The second type of collision occurs

much more frequently than the first type, and this property is used by Court to

create a collision avoidance technique, by having each node access the network only

at a specific time window, which is chosen relative to a busy/idle transition of the

network. The first type of collision thus never occurs, and the second type is avoided

16



by using a delay arbitration protocol. Each nodes waits for a period of time that

is proportional to its priority. Any network activity will force the network to wait

until the next busy/idle transition, but when the network is idle during the allocated

time window for a node, it may transmit. This provides a distributed solution to

making Ethernet deterministic, but a small hardware modification is necessary to

implement this protocol.

Yavatkar et al. [114] changed the Ethernet protocol, by using a reservation-based

scheme for real-time traffic. Their algorithm, called PCSMA (Predictable Carrier

Sense Multiple Access), assumes all real-time traffic to be periodic. It requires these

periodic source nodes to reserve transmission slots before they may begin transmit-

ting. Non-real-time traffic still uses the normal CSMA/CD protocol. They claim

that all periodic messages meet their deadlines, provided the channel utilization

stays below 100%.

Instead of avoiding collisions, one can also modify the collision resolution algo-

rithm. The CSMA/DCR (Carrier Sense Multiple Access with Deterministic Colli-

sion Resolution) protocol, proposed by Le Lann and Rivierre [60], replaces the prob-

abilistic BEB algorithm with a deterministic binary tree search algorithm. When no

collisions occur, the bus is accessed randomly, just like in Ethernet. Collisions are

resolved by scheduling messages with a policy based on the node addresses. This

policy may turn out to be inadequate for real-time systems, so a deadline-oriented

approach has also been proposed: DOD/CSMA/CD (Deadline Oriented Determin-

istic Carrier Sense Multiple Access with Collision Detect) [60]. This algorithm is

similar to CSMA/DCR, but it can handle real-time messages with arbitrary and

strict deadlines, making it more suitable to a wider range of real-time applications.

Pérez-Turiel et al. [86] combined the PCSMA and CSMA/DCR protocols, creat-

ing their CSMA/PDCR (Carrier Sense Multiple Access with Priority Deterministic

Collision Resolution) approach. Unlike PCSMA, CSMA/PDCR only comes to ac-

tion at the occurrence of a collision, which is then resolved using a binary tree

algorithm, like that proposed by Capetanakis [17].

Jan and Yeh [48] proposed a dynamic pi-persistent CSMA/CD protocol, where pi

is the transmission probability of a packet with laxity i. The transmission probability

depends on both the packet laxity and a time window. The size of the time window

is chosen by each node initially as some reasonable value. In each slot each node

halves the size of the window following a collision, not allowing it to drop below

the duration of one slot, and doubles the size of the window otherwise, not allowing

it to grow beyond the initial value. The transmission policy is used to implement

the MLF policy. Their simulation results show their protocol to have almost the

same performance as the window protocol of Zhao et al. [121], but their protocol is

simpler than the window protocol.

Li [62] proposed a priority-driven protocol to be applied on top of the IEEE 802.3

17



network, enabling support for 256 priority levels. They divide the time axis in slots,

with a length equal to the maximum end-to-end delay on the network. Nodes may

only start message transmission at the start of a slot. They use the window protocol

approach, so each node has a notion of a global priority queue of all messages waiting

to be transmitted on the network. Priority contention is solved by broadcasting a so-

called status packet, indicating the priority and length of the message a node wishes

to transmit. The node with the highest priority may then transmit the message.

Collisions between two or more status messages are resolved using a window protocol.

The protocol can only have collisions for the status messages, not for the actual data

packets.

Foh and Zukerman [32] approached the problem of bandwidth reservation by

allowing ongoing packet transmissions to be interrupted. Their CSMA/RI (Carrier

Sense Multiple Access with Reservations by Interruptions) protocol allows nodes,

which are ready and have a high-priority packet in the queue, to interrupt the

ongoing transmission of a packet from another node on the network. Only one

such interruption may take place at any given time. When a high-priority packet is

being sent which interrupted another one, this may not be interrupted again. Foh

and Zukerman showed their CSMA/RI protocol to have better performance than

the standard CSMA/CD protocol. Unfortunately they still cannot give any hard

real-time guarantees.

Wang et al. [112] proposed a protocol, called RTCC (Real-Time Communication

Control), which enables hard real-time communication on Ethernet. RTCC sits on

top of Ethernet. One node is designated bus controller, all others are called remote

terminals. A remote terminal has to receive permission from the controller before

it may send anything. This centralized approach obviously has the disadvantage

that failure in the master renders the entire network useless, unless some sort of

recovery protocol is implemented that enables the slaves to choose a new master

among them. Kerkes [55] developed an arbitration mechanism to create a real-time

Ethernet network which is very similar.

Molle [72] proposed an alternative to the BEB protocol which eliminates the per-

formance anomalies of this protocol. Furthermore, his BLAM (Binary Logarithmic

Arbitration Method) does not introduce any new problems of its own. BLAM shows

a large decrease in mean delay over BEB under moderate to high network load, and

it is backwards compatible, as nodes employing both BLAM as BEB may coexist in

the same network. Unfortunately, BLAM does not provide any timing guarantees,

so it does not make Ethernet deterministic.

Pedreiras et al. [83, 84] proposed the FTT-Ethernet protocol, using the flexible

time-triggered paradigm, developed for FTT-CAN [3,4] in the same group. Unsatis-

fied with existing real-time Ethernet solutions, they needed a protocol that supports

both event- and time-triggered communication, in hard and soft real-time and non-

18



real-time types. Their protocol divides the time axis into an infinite amount of

so-called elementary cycles. Within each cycle there can exist several windows, re-

served for different types of messages. There are currently two windows, one for

synchronous, or time-triggered traffic, and one for asynchronous, or event-triggered

traffic. Synchronous traffic is subjected to admission control, thus guaranteeing its

timeliness, and asynchronous traffic is based on a best-effort paradigm. Different

from normal Ethernet is the addressing scheme. All packets are source addressed

and broadcast to all nodes. Nodes interested in data from this particular source can

process the data, the other nodes simply discard the packet. There is one master

node which contains all the configuration and management data in the network, and

is responsible for the admission control for synchronous network traffic.

4 Other networks

The 100VG-AnyLAN network [2, 113], originally developed by HP, uses a demand-

priority scheme. It was standardized by the IEEE as IEEE 802.12 [45]. The network

topology is a hierarchical structure of switches, to which the nodes are connected.

The structure is hierarchical, because there is one switch which controls the entire

network. All lower-level switches simply relay the requests to the master switch. All

switches together act as one big logical switch.

The protocol operates roughly as follows. A node issues a request whenever it

wants to transmit a packet. The master switch honours these requests in Round

Robin (RR) fashion. Messages can have one of two priorities. All higher-priority

messages are granted access before the lower-priority messages may take their turn.

Higher-priority messages may also pre-empt lower-priority messages. A more de-

tailed description is given by Barilovits and Kadambi [12].

Support for real-time traffic, where multimedia traffic is mentioned mostly, is

given by 100VG-AnyLAN. The protocol guarantees access delay and throughput for

streams using high-priority packets. Unfortunately, the protocol has disadvantages.

Martini and Ottensmeyer [69] showed high sensitivity to the traffic characteristics

of the high-priority packets. While high-priority traffic is honoured to the requested

limits, low-priority traffic regularly suffers from very poor efficiency. The efficiency

deteriorates drastically with decreasing frame size.

Another area where real-time communication has been necessary for many years

is industry. E.g. production lines, where several automated procedures have to be

carried out with precise timing differences, real-time networks have been in use

for several years. These industrial networks are commonly known with the term

fieldbuses. Examples are PROFIBUS [88,104], FIP [31], and CAN [47]. PROFIBUS

is based around a Timed Token Protocol (TTP) [102, 103]. FIP uses a bus master

19



which grants publishers access to the bus, whose packets then get picked up by nodes

designated to be a consumer of that producer’s data. CAN uses a priority-driven

scheme, where the device having the message with the highest priority is granted

access to the bus. Unfortunately, these networks seldomly provide large amounts of

bandwidth, as they are typically used to transmit control messages, which tend to

be small. The CAN bus was developed for use inside automobiles, the others for

use in factories. Tindell et al. [99] derived an idealized scheduling analysis for CAN,

and showed, by studying two actual CAN interface controllers, that in practice the

ideal situation is not always reached: one controller lives up to the model, the other

does not, and needs an adapted model.

However, due mostly to cost, people are researching the use of Ethernet in such

application areas. At the end of the last section FTT-Ethernet was already men-

tioned, as well as FTT-CAN, to enhance CAN with support for both flexible op-

eration under guaranteed timeliness and joint support of both time-triggered and

event-triggered traffic. Already in 1985 Shimokawa and Shiobara [96] developed a

way of creating a real-time Ethernet for use in industry. They gave all nodes a

unique sequence number. A master node periodically broadcasts a synchronization

frame, after which each node may transmit, according to its sequence number in its

assigned time slot. Then the entire process starts again with a new synchronization

frame. The TEMPRA system by Pritty et al. [87] follows more or less the same

principle, only they make sure the node emitting the synchronization is at the far

end of an Ethernet bus network, so the synchronization frame travels the bus unidi-

rectionally. But their protocol is unfair, in that nodes closer to the synchronization

frame-emitting node will be given precedence.

Chen et al. [21] describe a protocol, based on a switched Ethernet network, which

uses the native priority queueing support [43] available in certain switches. This

enables nodes to provide Ethernet packets with a priority in the range [0, 1 . . . 7].

Switches give precedence to higher-priority packets over lower-priority packets. They

assign periodic real-time frames the highest priority (7), aperiodic real-time frames

the next lower priority (6), and the other priorities are used for soft real-time and

best-effort data. The periodic real-time frames are then scheduled using Rate Mono-

tonic (RM).

5 Real-time support in the higher layers

Up to now real-time transmission policies for use in a Local Area Network (LAN)

have been discussed. But, if it is necessary to have real-time communication between

two or more LANs, with several networks of all kinds inbetween, these policies are

not enough. Naturally, when a real-time connection is to be set up and whatever

20



QoS parameters that were agreed upon have to be kept, all involved networks have

to be able to provide such guarantees. When one network in the chain does not

provide QoS guarantees, the entire link cannot be guaranteed.

But it is not practical to set up a real-time connection by first making arrange-

ments in the first network on the route, then with the second, with the third, and so

on, until the final network, in which the destination node is situated, is reached. So

it is desirable to use a single protocol, known to all internetworking nodes or gate-

ways, that connect two networks together, with which a node can make appropriate

QoS arrangements along the entire route.

Applications do not talk directly to the data link layer. Applications use the

transport layer to provide them with network services. And this transport layer

uses the network layer to talk to the data link layer. The network layer provides

addressing, which is unique for every node, and preferably for every application

on each node. Network layer addressing is also unique in the entire internetwork,

whereas the addressing used in the data link layer needs only to be unique for LAN

in which the node resides. The transport layer is responsible for providing concepts

as channels, which can be used to provide guarantees that all packets will actually

be delivered, in order and without errors. For real-time services the transport layer

needs to be able to provide timeliness and throughput guarantees to the application,

and it needs support from the underlying layers to be able to do so.

Andrews and Cyganski [10] developed a transport layer protocol, called XUDP

(eXtended User Datagram Protocol), that provides an alternative, semi-reliable,

method for transmitting real-time, multimedia data over an internet, without direct

real-time support from the underlying layers. They claim that XUDP works on top

of any IP network, which, in general, do not support any QoS parameters at all. It is

semi-reliable, as data that is detected to be too late by the sending node, is thrown

away to make room for following data that is on time. For multimedia data it is

not too bad to throw away a frame now and then, as long as the latency remains

constant. XUDP is not able to provide hard real-time guarantees, soft real-time is

the best that can be provided.

Long et al. [64] developed a transport layer, called Swift, which can provide

guarantees for a minimum throughput, a maximum delay, and a maximum jitter

when using FDDI for the data link layer. The protocol provides streams which will

be transmitted with a nearly constant data rate, for which messages will be kept

in sequence. The application may choose whether the protocol should attempt to

guarantee delivery, the requested data rate is always guaranteed. Swift is meant for

multimedia data and cannot provide hard real-time guarantees. Also it is suitable

only for use on FDDI networks.

Zheng and Shin [123] have given a mathematical basis for the problem of estab-

lishing real-time channels in packet-switched networks, where real-time schedulers

21



in the switches make decisions which packets are transferred first over the links.

Ferrari and Verma [30] obtained a solution under the assumption that the summa-

tion of the maximum packet transmission times over all real-time channels passing

through a certain link is not larger than the minimum packet inter-arrival times of

these channels. Without this assumption Kandlur et al. [54] established a sufficient

condition to check the schedulability of channels. Zheng and Shin [123] provide a

necessary and sufficient condition for the schedulability of a set of channels over a

link and developed an efficient method for computing the minimum delay bound for

each channel. Algorithms like these are necessary if gateways are to be built that

can provide guarantees on internetwork links.

The Tenet group has built a cooperating set of network and transport layer

protocols that provide real-time internetworking channels [11]. They provide two

transport layer protocols, called RMTP (Real-time Message Transport Protocol)

and CMTP (Continuous Media Transport Protocol), which work on top of the RTIP

(Real-Time Internetwork Protocol) network layer protocol. These are managed by

RCAP (Real-time Channel Administration Protocol). The RTCMP (Real-Time

Control Message Protocol) is used to deal with failures. RTIP is connection-oriented,

but does not provide reliable data delivery. RMTP provides a message-based service

on top of RTIP, CMTP provides a periodic, time-driven service.

The ST-II protocol [101] was proposed as a network layer protocol to use for

bandwidth reservation for packetized audio and video communication on the Inter-

net. ST-II tries to forward data packets quickly and uses a small header containing

only the necessary components to build a connection using virtual circuit address-

ing, similar to ATM addressing. It has been implemented by Delgrossi et al. [26],

together with the Heidelberg multimedia transport protocol to be used on top of

ST-II.

RSVP (ReSerVation Protocol) [14,15,115] is the protocol that is most in use in

the Internet today. RSVP takes care only of the reservation of resources along a route

from node to node, the gateways and routers inbetween reserve whatever is needed

to accomodate the link, after which a protocol such as IP is used for transmitting

the actual data. Therefore, on any network the directly connecting gateways or

routers can make local reservations, using whatever facilities are available on that

link, which can be anything of the protocols discussed earlier. When all reservations

are made, the source can be notified using RSVP messages that the connection is

set up, with bandwidth reservations in place, and that data transfer can begin.

This data transfer is mostly done using the transport-layer protocol RTP (Real-

time Transport Protocol) [94]. RTP provides applications with synchronization and

sequencing services, framing, multiplexing, and unreliable data transfer. It is in-

dependent of the lower-layer protocols (UDP, IP) and features a separate control

protocol for QoS information and retransmission requests.

22



Inside the Internet routers employ different techniques to ensure QoS parameters

on the traffic flowing through them. To schedule the packets on their outgoing

interfaces algorithms such as First In First Out (FIFO), Priority Queueing, RR,

or Weighted Fair Queueing (WFQ) [27, 82] are used. To regulate the rate at an

interface routers commonly use the leaky bucket algorithm [79].

6 Suitability for the At-Home Anywhere

project

The network that is to be used in the At-Home Anywhere project needs to be multi-

purpose. It needs to support real-time streams, to be used for both entertainment

(audio, video) and Command and Control (C&C). It also needs to support best-

effort traffic. Furthermore, the network components must be inexpensive and, when

possible, made of existing, unmodified hardware, which can also be incorporated in

small devices. And the protocol must be able to deal with nodes coming and going

at all times, i.e. it must support a form of plug-and-play.

The token-ring networks have a few drawbacks which make them unsuitable for

use in the At-Home Anywhere project (lHA). IEEE 802.4 has the main drawback

that it has been withdrawn as a standard by the IEEE. There is no hardware for

sale any more that uses this network protocol.

IEEE 802.5 is still being used, but its use is declining. Personally, we have only

seen it being used in office environments, and most of these are switching to Ether-

net. There are two main reasons for this: performance and cost. Modern Ethernet

networks provide up to six times the bandwidth of IEEE 802.5 networks, and cost

only a fraction of them. As real-time capabilities are generally not important in an

office environment, Ethernet usually more than meets its needs. These two reasons

are also important in lHA: IEEE 802.5 is too expensive and rather limited in band-

width if one has to transport several combined video and audio streams across the

network.

FDDI is being used mostly on a larger scale. FDDI networks can span many

kilometers and make use of high-bandwidth, expensive fiber optic cabling. Cost is

the main reason why FDDI is not suitable for the lHA project.

Fieldbuses have the general disadvantage of not being built to support high-

bandwidth traffic. Some also use source addressing, which is less useful for building a

multi-purpose network. As these networks are mostly used for industrial applications

or in expensive consumer products, such as automobiles, these devices generally

are not small or inexpensive. These protocols also do not support plug-and-play

techniques, as they are designed for networks with a static layout.

Ethernet is the most promising network technology. It is in wide use today,

23



generally available and inexpensive to procure and install. It does, however, need

some higher-layer protocol to make it suitable for real-time traffic. There are several

protocols available, but some, such as the virtual time and window protocols, are

very complex, making it hard to implement them in small devices that are low

on processing and memory capacity. The master-slave protocols fail immediately

when the master is taken out of the network, therefore making the incorporation of

plug-and-play difficult. Protocols which put additional intelligence into the switches

require firmware, possibly even hardware, changes in them. A protocol, such as

RETHER, looks quite promising, but it uses a long switching time to enter the

real-time mode for the first real-time stream, and its real-time scheduling strategy

is less than optimal.

Within the lHA project we intend to work on a network protocol based on token

passing. We will be using standard real-time scheduling algorithms to steer the token

through the network, and in this way allocate bandwidth to the nodes according to

the needs of the real-time streams originating from the nodes. Our current protocol

needs a fully-connected network with broadcast and busy-detection capabilities. We

intend to use a distributed scheduler, i.e. each node makes its own decisions about

the global schedule, so we will also need some form of clock synchronization, to make

sure that all nodes will make the same decisions in comparable situations.

For the implementation we will be using Ethernet, in its 10 Mbit and 100 Mbit

variants, because of its large installment today and its cost. We will use IP on

top of our protocol, which we named RTnet, to enable us to build applications

which make use of the network. We will address network scheduling issues and clock

synchronization issues. We will also make sure our protocol functions properly in

a dynamic network configuration, where nodes may appear and disappear at any

time.

Bibliography

[1] G. Agrawal, B. Chen, W. Zhao, and S. Davari. Guaranteeing synchronous message
deadlines with the timed token medium access control protocol. IEEE Transactions
on Computers, 43(3):327–339, Mar. 1994.

[2] A.R. Albrecht and P.A. Thaler. Introduction to 100VG-AnyLAN and the IEEE 802.12
local area network standard. Hewlett-Packard Journal: technical information from the
laboratories of Hewlett-Packard Company, 46(4):6–12, Aug. 1995.

[3] L. Almeida, J.A.G. Fonseca, and P. Fonseca. A flexible time-triggered communication
system based on the Controller Area Network: Experimental results. In Proceedings of
the Fieldbus Conference (FeT ’99), pages 342–350, Magdeburg, Germany, Sept. 1999.
ISBN 3-211-83394-3.

[4] L. Almeida, P. Pedreiras, and J.A.G. Fonseca. The FTT-CAN protocol: Why and
how. IEEE Transactions on Industrial Electronics, 49(6):1189–1201, Dec. 2002.

24



[5] M. Alves, E. Tovar, and F. Vasques. Ethernet goes real-time: a survey on research
and technological developments. Technical Report HURRAY-TR-0001, Polytechnic
Institute of Porto –– School of Engineering (ISEP-IPP), Jan. 2000.

[6] American National Standards Institute. ANSI FDDI Standard ––Media Access Control
(MAC), 1987. ANSI Std. X3.139-1987, ISO 9314-2:1989.

[7] American National Standards Institute. ANSI FDDI Standard ––Physical Layer,
Medium Dependent (PMD), 1990. ANSI Std. X3.166-1990, ISO 9314-3:1990.

[8] American National Standards Institute. ANSI FDDI Standard –– Station Management
(SMT), 1994. ANSI Std. X3.229-1994, ISO DIS 9314-6*.

[9] American National Standards Institute. ANSI FDDI Standard ––Physical Layer Pro-
tocol (PHY), 1998. ANSI Std. X3.148-1998, ISO 9314-1:1989.

[10] M.J. Andrews and D. Cyganski. The XUDP protocol for timely multimedia transport.
In Proceedings 3rd Technical Conference on Telecommunications R&D, Worcester, MA,
USA, Nov. 1997.

[11] A. Banerjea, D. Ferrari, B.A. Mah, M. Moran, D.C. Verma, and H. Zhang. The
Tenet real-time protocol suite: Design, implementation, and experiences. IEEE/ACM
Transactions on Networking, 4(1):1–10, Feb. 1996.

[12] S. Barilovits and J. Kadambi. 100VG-AnyLAN: Network operation and real-time
capabilities. In Proceedings 19th annual IEEE conference on Local Computer Networks,
pages 120–128, Minneapolis, MN, USA, Oct. 1994. ISBN 0-8186-6680-3.

[13] D.R. Boggs, J.C. Mogul, and C.A. Kent. Measured capacity of an ethernet: Myths
and reality. In Symposium proceedings on Communications architectures and protocols
(ACM SIGCOMM ’88), pages 222–234, 1988. ISBN 0-89791-279-9.

[14] B. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource ReSerVation
Protocol (RSVP) ––Version 1 Functional Specification. RFC Editor, Sept. 1997. RFC
2205.

[15] R. Braden, D. Estrin, S. Berson, S. Herzog, and D. Zappala. The design of the RSVP
protocol. Technical report, USC/Information Sciences Institute, July 1996.

[16] F. Buzluca and E. Harmancı. Dynamic synchronous bandwidth allocation scheme for
hard real-time communication in FDDI networks. IEE Proceedings ––Computers and
Digital Techniques, 148(1):15–21, Jan. 2001.

[17] J.I. Capetanakis. Generalized TDMA: The multi-accessing tree protocol. IEEE Trans-
actions on Communications, 27(10):1476–1484, Oct. 1979.

[18] B. Chen, G. Agrawal, and W. Zhao. Optimal synchronous capacity allocation for hard
real-time communications with the timed token protocol. In Proceedings 13th IEEE
Real-Time Systems Symposium, pages 198–207, Phoenix, AZ, USA, Dec. 1992. IEEE
Computer Society Press. ISBN 0-8186-3195-3.

[19] B. Chen and W. Zhao. Properties of the timed token protocol. Technical Report
92-038, Texas A&M University, Oct. 1992.

[20] C.H. Chen and L.N. Bhuyan. Design and analysis of multiple token ring networks. In
Proceedings 7th Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM ’88), pages 477–486, New Orleans, LA, USA, Mar. 1988. ISBN
0-8186-0833-1.

[21] J. Chen, Z. Wang, and Y. Sun. Real-time capability analysis for switch industrial
Ethernet traffic priority-based. In Proceedings of the 2002 IEEE International Con-
ference on Control Applications, pages 525–529, Glasgow, UK, Sept. 2002. ISBN
0-7803-7386-3.

25



[22] T. Cheng, J.Y. Chung, and C.J. Georgiou. Enhancement of token bus protocols for
multimedia applications. In Digest of papers, IEEE COMPCON Spring, pages 30–36,
1993.

[23] Y. Choo and C. Kim. Guaranteeing periodic communication services in a multiple
access network using token with timer. Technical Report TP01ISA1109, The In-
strumentation, Systems, and Automation Society, Research Triangle Park, NC, USA,
2001.

[24] M.A. Colvin and A.C. Weaver. Performance of single access classes on the IEEE 802.4
token bus. IEEE Transactions on Communications, 34(12):1253–1256, Dec. 1986.

[25] R. Court. Real-time Ethernet. Computer Communications, 15(3):198–201, Apr. 1992.

[26] L. Delgrossi, R.G. Herrtwich, and F.O. Hoffmann. An implementation of ST-II for the
Heidelberg transport system. Internetworking: Research and Experience, 5(2):43–69,
June 1994.

[27] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing
algorithm. Internetworking: Research and Experience, 1(1):3–26, Sept. 1990.

[28] D. Dykeman and W. Bux. Analysis and tuning of the FDDI media access control
protocol. IEEE Journal on Selected Areas in Communications, 6(6):997–1010, July
1988.

[29] M.N. El-Derini and M.R. El-Sakka. A CSMA protocol under a priority time con-
strained for real-time communication. In Proceedings 2nd IEEE Workshop on Future
Trends of Distributed Computing Systems, pages 128–134, Cairo, Egypt, Sept./Oct.
1990. IEEE Computer Society Press. ISBN 0-8186-2088-9.

[30] D. Ferrari and D.C. Verma. A scheme for real-time channel establishment in wide-
area networks. IEEE Journal on Selected Areas in Communications, 8(3):368–379,
Apr. 1990.

[31] FIP web site. http://www.worldfip.org/.

[32] C.H. Foh and M. Zukerman. CSMA with reservations by interruptions (CSMA/RI):
A novel approach to reduce collisions in CSMA/CD. IEEE Journal on Selected Areas
in Communications, 18(9):1572–1580, Sept. 2000.

[33] R.G. Gallager. Conflict resolution in random access broadcast networks. In Proceedings
of the AFOSR Workshop in Communication Theory and Applications, pages 74–76,
Provincetown, MA, USA, 1978.

[34] P.M. Gopal and J.W. Wong. Analysis of a hybrid token-CSMA/CD protocol for bus
networks. Computer Networks & ISDN Systems, 9(2):131–141, Feb. 1985.

[35] R.M. Grow. A timed-token protocol for local area networks. In Proceedings Electro
’82, Token Access Protocols, pages 17/3:1–7, May 1982.

[36] R.M. Grow. Timed token protocol for local area networks, July 1984. Patent
US4459588.

[37] M. Hamdaoui and P. Ramanathan. Selection of timed token protocol parameters to
guarantee message deadlines. IEEE/ACM Transactions on Networking, 3(3):340–351,
June 1995.

[38] G. Held. Token-ring networks: characteristics, operation, construction and manage-
ment. John Wiley & Sons, 1994. ISBN 0-471-94041-0.

[39] H. Hoang and M. Jonsson. Switched real-time Ethernet in industrial applications ––
asymmetric deadline partitioning scheme. In Proceedings 2nd International Workshop
on Real-Time LANs in the Internet Age, Porto, Portugal, July 2003. To appear.

26

http://www.worldfip.org/


[40] H. Hoang, M. Jonsson, U. Hagström, and A. Kallerdahl. Switched real-time Ethernet
with earliest deadline first scheduling –– protocols and traffic handling. In Proceedings
Workshop on Parallel and Distributed Real-Time Systems (WPDRTS 2002) in con-
junction with International Parallel and Distributed Processing Symposium (IPDPS
’02), Fort Lauderdale, FL, USA, Apr. 2002.

[41] H. Hoang, M. Jonsson, A. Larsson, R. Olsson, and C. Bergenhem. Deadline first
scheduling in switched real-time Ethernet –– deadline partitioning issues and software
implementation experiments. In E. Tovar, T. Sauter, and L.M. Pinho, editors, Proceed-
ings 1st International Workshop on Real-Time LANs in the Internet Age, pages 68–71,
Vienna, Austria, June 2002. Instituto Politécnico do Porto. ISBN 972-8688-06-7.

[42] Institute of Electrical and Electronics Engineers. IEEE Standard for Information Tech-
nology ––Telecommunications and Information Exchange between Systems ––Local and
Metropolitan Area Networks –– Specific Requirements ––Part 4: Token-Passing Bus Ac-
cess Method and Physical Layer Specifications, 1990. IEEE Std. 802.4-1990, ISO/IEC
8802-4:1990.

[43] Institute of Electrical and Electronics Engineers. IEEE Standard for Information Tech-
nology ––Telecommunications and Information Exchange between Systems ––Local and
Metropolitan Area Networks ––Common Specifications ––Part 3: Media Access Control
(MAC) Bridges, 1998. IEEE Std. 802.1D-1998, ISO/IEC 15802-3:1998.

[44] Institute of Electrical and Electronics Engineers. IEEE Standard for Information
Technology ––Telecommunications and Information Exchange between Systems –– Local
and Metropolitan Area Networks –– Specific Requirements ––Part 5: Token Ring Access
Method and Physical Layer Specifications, 1998. IEEE Std. 802.5-1998, ISO/IEC 8802-
5:1998E.

[45] Institute of Electrical and Electronics Engineers. IEEE Standard for Information
Technology ––Telecommunications and Information Exchange between Systems –– Local
and Metropolitan Area Networks –– Specific Requirements ––Part 12: Demand-Priority
Access Method, Physical Layer and Repeater Specifications, 1998. IEEE Std. 802.12-
1998, ISO/IEC 8802-12:1998.

[46] Institute of Electrical and Electronics Engineers. IEEE Standard for Information Tech-
nology ––Telecommunications and Information Exchange between Systems ––Local and
Metropolitan Area Networks –– Specific Requirements ––Part 3: Carrier Sense Multi-
ple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer
Specifications, 2002. IEEE Std. 802.3-2002.

[47] International Standards Organisation. Road Vehicles –– Interchange of Digital Infor-
mation ––Controller Area Network (CAN) for High-Speed Communication, 1993. ISO
11898.

[48] R.H. Jan and Y.J. Yeh. CSMA/CD protocol for time-constrained communication on
bus networks. IEE Proceedings I ––Communication, Speech and Vision, 140(3):197–
202, June 1993.

[49] A.P. Jayasumana. Throughput analysis of the IEEE 802.4 priority scheme. IEEE
Transactions on Communications, 37(6):565–571, June 1989.

[50] A.P. Jayasumana and P.N. Werahera. Performance of fibre distributed data interface
network for multiple classes of traffic. IEE Proceedings E ––Computers and Digital
Techniques, 137(5):401–408, Sept. 1990.

[51] M.J. Johnson. Reliability mechanisms of the FDDI high bandwidth token ring proto-
col. Computer Networks & ISDN Systems, 11(2):121–131, Feb. 1986.

[52] M.J. Johnson. Proof that timing requirements of the FDDI token ring protocol are
satisfied. IEEE Transactions on Communications, 35(6):620–625, June 1987.

27



[53] S. Kamat, N. Malcolm, and W. Zhao. Performance evaluation of a bandwidth al-
location scheme for guaranteeing synchronous messages with arbitrary deadlines in
an FDDI network. In Proceedings 14th IEEE Real-Time Systems Symposium, pages
34–43, Raleigh-Durham, NC, USA, Dec. 1993. IEEE Computer Society Press. ISBN
0-8186-4480-X.

[54] D.D. Kandlur, K.G. Shin, and D. Ferrari. Real-time communication in multi-hop net-
works. In Proceedings 11th International Conference on Distributed Computing Sys-
tems (ICDCS ’91), pages 300–307, Arlington, TX, USA, May 1991. IEEE Computer
Society Press.

[55] J. Kerkes. Real-time Ethernet. Embedded Systems Programming, 14(1):43–54, Jan.
2001.

[56] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl, C. Senft, and R. Zain-
linger. Distributed fault-tolerant real-time systems: The Mars approach. IEEE Micro,
9(1):25–40, Jan./Feb. 1989.

[57] J.F. Kurose, M. Schwartz, and Y. Yemini. Multiple-access protocols and time-
constrained communication. ACM Computing Surveys, 16(1):43–70, Mar. 1984.

[58] S.K. Kweon, K.G. Shin, and G. Workman. Achieving real-time communication over
Ethernet with adaptive traffic smoothing. In Proceedings 6th IEEE Real-Time Tech-
nology and Applications Symposium, pages 90–100, Washington, DC, USA, May/June
2000. ISBN 0-7695-0713-1.

[59] S.K. Kweon, K.G. Shin, and Q. Zheng. Statistical real-time communication over
Ethernet for manufacturing automation systems. In Proceedings 5th IEEE Real-Time
Technology and Applications Symposium, pages 192–202, Vancouver, Canada, June
1999. ISBN 0-7695-0194-X.

[60] G. Le Lann and N. Rivierre. Real-time communications over broadcast networks: the
CSMA-DCR and the DOD-CSMA-CD protocols. Research report 1863, INRIA, Mar.
1993.

[61] C.T. Lea and J.S. Meditch. A channel access protocol for integrated voice/data ap-
plications. IEEE Journal on Selected Areas in Communications, 5(6):939–947, July
1987.

[62] M. Li. A priority-based protocol for the 802.3 network. In J.A. de la Puente and
M.G. Rodd, editors, Proceedings of the 12th IFAC Workshop on Distributed Computer
Control Systems, pages 19–22, Toledo, Spain, Sept. 1994. ISBN 0-08-042237-3.

[63] C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming in a hard
real-time environment. Journal of the ACM, 20(1):46–61, Jan. 1973.

[64] D.D.E. Long, C. Osterbrock, and L.F. Cabrera. Providing performance guarantees
in an FDDI network. In Proceedings 13th International Conference on Distributed
Computing Systems (ICDCS ’93), pages 328–336, Pittsburgh, PA, USA, May 1993.
IEEE Computer Society Press. ISBN 0-8186-3770-6.

[65] N. Malcolm, S. Kamat, and W. Zhao. Real-time communication in FDDI networks.
Real-Time Systems, 10(1):75–107, Jan. 1996.

[66] N. Malcolm and W. Zhao. Guaranteeing synchronous messages with arbitrary deadline
constraints in an FDDI network. In Proceedings 18th annual IEEE conference on Local
Computer Networks, pages 186–195, Minneapolis, MN, USA, Sept. 1993. ISBN 0-8186-
4510-5.

[67] N. Malcolm and W. Zhao. The timed-token protocol for real-time communications.
IEEE Computer, 27(1):35–41, Jan. 1994.

28



[68] N. Malcolm and W. Zhao. Hard real-time communication in multiple-access networks.
Real-Time Systems, 8(1):35–77, Jan. 1995.

[69] P. Martini and J. Ottensmeyer. Real-time communication in the demand-priority
LAN, the effects on normal priority traffic. In Proceedings 20th annual IEEE conference
on Local Computer Networks, pages 350–357, Minneapolis, MN, USA, Oct. 1995. ISBN
0-8186-7162-9.

[70] R.M. Metcalfe and D.R. Boggs. Ethernet: Distributed packet switching for local
computer networks. Communications of the ACM, 19(7):395–404, July 1976.

[71] M.L. Molle. Prioritized-virtual-time CSMA: Head-of-the-line priority classes without
added overhead. IEEE Transactions on Communications, 39(6):915–927, June 1991.

[72] M.L. Molle. A new binary logarithmic arbitration method for Ethernet. Technical Re-
port CSRI-298, Computer Systems Research Institute, University of Toronto, Toronto,
Canada, July 1994.

[73] M.L. Molle and L. Kleinrock. Virtual time CSMA: Why two clocks are better than
one. IEEE Transactions on Communications, 33(9):919–933, Sept. 1985.

[74] P. Montuschi, L. Ciminiera, and A. Valenzano. Time characteristics of IEEE 802.4 to-
ken bus protocol. IEE Proceedings E ––Computers and Digital Techniques, 139(1):81–
87, Jan. 1992.

[75] P. Montuschi, A. Valenzano, and L. Ciminiera. Selection of token holding times in
timed-token protocols. IEEE Transactions on Industrial Electronics, 37(6):442–451,
Dec. 1990.

[76] H. Moon, H.S. Park, S.C. Ahn, and W.H. Kwon. Performance degradation of the
IEEE 802.4 token bus network in a noisy environment. Computer Communications,
21(6):547–557, May 1998.

[77] J.K.Y. Ng and J.W.S. Liu. Performance of multiple-ring networks for real-time commu-
nications. In Proceedings 17th annual IEEE conference on Local Computer Networks,
pages 426–435, Minneapolis, MN, USA, Sept. 1992. ISBN 0-8186-3095-7.

[78] I.G. Niemegeers and C.A. Vissers. TWENTENET: a LAN with message priorities,
design and performance considerations. In Proceedings of the ACM SIGCOMM sym-
posium on communications architectures and protocols, pages 178–185, 1984. ISBN
0-89791-136-9.

[79] G. Niestegge. The ‘leaky bucket’ policing method in the ATM (Asynchronous Transfer
Mode) network. International Journal of Digital and Analog Communication Systems,
3(2):187–197, Apr./May/June 1990.

[80] OMNeT++ web site. http://www.omnetpp.org/.

[81] J.W.M. Pang and F.A. Tobagi. Throughput analysis of a timer controlled token pass-
ing protocol under heavy load. IEEE Transactions on Communications, 37(7):694–702,
July 1989.

[82] A.K. Parekh and R.G. Gallager. A generalized processor sharing approach to flow con-
trol in integrated services networks: The single-node case. IEEE/ACM Transactions
on Networking, 1(3):344–357, June 1993.

[83] P. Pedreiras and L. Almeida. Flexibility, timeliness and efficiency over Ethernet. In
E. Tovar, T. Sauter, and L.M. Pinho, editors, Proceedings 1st International Workshop
on Real-Time LANs in the Internet Age, pages 53–56, Vienna, Austria, June 2002.
Instituto Politécnico do Porto. ISBN 972-8688-06-7.

29

http://www.omnetpp.org/


[84] P. Pedreiras, L. Almeida, and P. Gai. The FTT-Ethernet protocol: Merging flexibility,
timeliness and efficiency. In Proceedings 14th Euromicro Conference on Real-Time
Systems, pages 152–160, Vienna, Austria, June 2002. ISBN 0-7695-1665-3.

[85] P. Pedreiras, R. Leite, and L. Almeida. Characterizing the real-time behavior of
prioritized switched-Ethernet. In Proceedings 2nd International Workshop on Real-
Time LANs in the Internet Age, Porto, Portugal, July 2003. To appear.

[86] J. Pérez-Turiel, J.C. Fraile-Marinero, and J.R. Perán-González. CSMA/PDCR: A
random access protocol without priority inversion. In Proceedings IEEE IECON 22nd

International Conference on Industrial Electronics, Control, and Instrumentation, vol-
ume 2, pages 910–915, Taipei, Taiwan, Aug. 1996. ISBN 0-7803-2776-4.

[87] D.W. Pritty, J.R. Malone, D.N. Smeed, S.K. Banerjee, and N.L. Lawrie. A real-
time upgrade for Ethernet based factory networking. In Proceedings IEEE IECON
21st International Conference on Industrial Electronics, Control, and Instrumentation,
volume 2, pages 1631–1637, Orlando, FL, USA, Nov. 1995. ISBN 0-7803-3027-7.

[88] PROFIBUS web site. http://www.profibus.com/.

[89] F.E. Ross. FDDI –– a tutorial. IEEE Communications Magazine, 24(5):10–17, May
1986.

[90] F.E. Ross. Rings are ’round for good! IEEE Network, 1(1):31–38, Jan. 1987.

[91] F.E. Ross. An overview of FDDI: The fiber distributed data interface. IEEE Journal
on Selected Areas in Communications, 7(7):1043–1051, Sept. 1989.

[92] S.F. Salian, A.Y.M. Shakaff, and R.B. Ahmad. Improvement of virtual-time CSMA
protocol for distributed hard and soft real-time systems on the Ethernet. In Proceedings
2002 Student Conference on Research and Development (SCOReD 2002), pages 128–
131, Shah Alam, Malaysia, July 2002. IEEE. ISBN 0-7803-7565-3.

[93] S.S. Sathaye and J.K. Strosnider. Conventional and early token release scheduling
models for the IEEE 802.5 token ring. Real-Time Systems, 7(1):5–32, July 1994.

[94] H. Schulzrinne, S.L. Casner, R. Frederick, and V. Jacobson. RTP: A Transport Pro-
tocol for Real-Time Applications. RFC Editor, Jan. 1996. RFC 1889.

[95] K.C. Sevcik and M.J. Johnson. Cycle time properties of the FDDI token ring protocol.
IEEE Transactions on Software Engineering, 13(3):376–385, Mar. 1987.

[96] Y. Shimokawa and Y. Shiobara. Real-time Ethernet for industrial applications. In
P.P. Fasang, editor, Proceedings IEEE IECON 11th International Conference on In-
dustrial Electronics, Control, and Instrumentation, pages 829–834, San Francisco, CA,
USA, Nov. 1985.

[97] N.C. Strole. The IBM token-ring network –– a functional overview. IEEE Network,
1(1):23–30, Jan. 1987.

[98] J.K. Strosnider, T. Marchok, and J. Lehoczky. Advanced real-time scheduling using
the IEEE 802.5 token ring. In Proceedings 9th IEEE Real-Time Systems Symposium,
pages 42–52, Huntsville, AL, USA, Dec. 1988. IEEE Computer Society Press.

[99] K.W. Tindell, H. Hansson, and A.J. Wellings. Analysing real-time communications:
Controller Area Network (CAN). In Proceedings 15th IEEE Real-Time Systems Sym-
posium, pages 259–263, San Juan, Puerto Rico, Dec. 1994. IEEE Computer Society
Press. ISBN 0-8186-6600-5.

[100] F.A. Tobagi. Carrier sense multiple access with message-based priority functions.
IEEE Transactions on Communications, 30(1):185–200, Jan. 1982.

[101] C. Topolcic. Experimental Internet Stream Protocol, Version 2 (ST-II). RFC Editor,
Oct. 1990. RFC 1190.

30

http://www.profibus.com/


[102] E. Tovar and F. Vasques. Analysis of the worst-case real token rotation time in
PROFIBUS networks. In Proceedings of the Fieldbus Conference (FeT ’99), pages
359–366, Magdeburg, Germany, Sept. 1999. ISBN 3-211-83394-3.

[103] E. Tovar and F. Vasques. Cycle time properties of the PROFIBUS timed-token pro-
tocol. Computer Communications, 22(13):1206–1216, Aug. 1999.

[104] E. Tovar and F. Vasques. Real-time fieldbus communications using Profibus networks.
IEEE Transactions on Industrial Electronics, 46(6):1241–1251, Dec. 1999.

[105] J.M. Ulm. A timed token ring local area network and its performance characteristics.
In Proceedings 7th IEEE conference on Local Computer Networks, pages 50–56, 1982.

[106] A. Valenzano, P. Montuschi, and L. Ciminiera. Some properties of timed token medium
access protocols. IEEE Transactions on Software Engineering, 16(8):858–869, Aug.
1990.

[107] S. Varadarajan and T. Chiueh. EtheReal: A host-transparent real-time fast Ethernet
switch. In Proceedings 6th IEEE International Conference on Network Protocols, pages
12–21, Austin, TX, USA, Oct. 1998.

[108] S. Varadarajan and T. Chiueh. Automatic fault detection and recovery in real time
switched Ethernet networks. In Proceedings 18th Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM ’99), volume 1, pages 161–169,
New York, NY, USA, Mar. 1999.

[109] C. Venkatramani. The Design, Implementation and Evaluation of RETHER: a Real-
Time Ethernet Protocol. PhD thesis, State University of New York at Stony Brook,
Jan. 1997.

[110] C. Venkatramani and T. Chiueh. Supporting real-time traffic on Ethernet. In Pro-
ceedings 15th IEEE Real-Time Systems Symposium, pages 282–286, San Juan, Puerto
Rico, Dec. 1994. IEEE Computer Society Press. ISBN 0-8186-6600-5.

[111] C. Venkatramani and T. Chiueh. Design, implementation and evaluation of a software
based real-time Ethernet protocol. In Proceedings of the conference on Applications,
technologies, architectures, and protocols for computer communication (ACM SIG-
COMM ’95), pages 27–37, Cambridge, MA, USA, Aug./Sept. 1995.

[112] Z.P. Wang, G.Z. Xiong, J. Luo, M.Z. Lai, and W. Zhou. A hard real-time com-
munication control protocol based on the Ethernet. In Proceedings 7th Australasian
Conference on Parallel and Real-Time Systems (PART 2000), pages 161–170, Sydney,
Australia, Nov. 2000. Springer-Verlag. ISBN 962-430-134-4.

[113] G. Watson, A. Albrecht, J. Curcio, D. Dove, S. Goody, J. Grinham, M.P. Spratt,
and P.A. Thaler. The demand priority MAC protocol. IEEE Network, 9(1):28–34,
Jan./Feb. 1995.

[114] R. Yavatkar, P. Pai, and R. Finkel. A reservation-based CSMA protocol for inte-
grated manufacturing networks. IEEE Transactions on Systems, Man, and Cybernet-
ics, 24(8):1247–1258, Aug. 1994.

[115] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala. RSVP: A new resource
reservation protocol. IEEE Network, 7(5):8–18, Sept. 1993.

[116] S. Zhang and A. Burns. An optimal synchronous bandwidth allocation scheme for
guaranteeing synchronous message deadlines with the timed-token MAC protocol.
IEEE/ACM Transactions on Networking, 3(6):729–741, Dec. 1995.

[117] S. Zhang, A. Burns, and T.H. Cheng. Cycle-time properties of the timed token medium
access control protocol. IEEE Transactions on Computers, 51(11):1362–1367, Nov.
2002.

31



[118] S. Zhang, A. Burns, and A.J. Wellings. An efficient and practical local synchronous
bandwidth allocation scheme for the timed-token MAC protocol. In Proceedings 15th

Annual Joint Conference of the IEEE Computer and Communications Societies (IN-
FOCOM ’96), volume 2, pages 920–927, San Francisco, CA, USA, Mar. 1996. ISBN
0-8186-7292-7.

[119] W. Zhao and K. Ramamritham. A virtual time CSMA protocol for hard real time
communication. In Proceedings 7th IEEE Real-Time Systems Symposium, pages 120–
127, New Orleans, LA, USA, Dec. 1986. IEEE Computer Society Press. ISBN 0-8186-
0749-1.

[120] W. Zhao and K. Ramamritham. Virtual time CSMA protocols for hard real-time
communication. IEEE Transactions on Software Engineering, 13(8):938–952, Aug.
1987.

[121] W. Zhao, J.A. Stankovic, and K. Ramamritham. A window protocol for transmission
of time-constrained messages. IEEE Transactions on Computers, 39(9):1186–1203,
Sept. 1990.

[122] Q. Zheng and K.G. Shin. Synchronous bandwidth allocation in FDDI networks. In
Proceedings first ACM international conference on Multimedia, pages 31–38, Anaheim,
CA, USA, Aug. 1993. ACM Press. ISBN 0-89791-596-8.

[123] Q. Zheng and K.G. Shin. On the ability of establishing real-time channels in
point-to-point packet-switched networks. IEEE Transactions on Communications,
42(2/3/4):1096–1105, Feb./Mar./Apr. 1994.

[124] T. Znati. A deadline-driven window protocol for transmission of hard real-time traffic.
In Proceedings 10th annual IEEE Conference on Computers and Communications,
pages 667–673, Scottsdale, AZ, USA, Mar. 1991. ISBN 0-8186-2133-8.

32


	Introduction
	Token-ring networks
	IEEE 802.5
	FDDI
	IEEE 802.4
	Performance of the token protocols

	Broadcast networks
	Constraining generated traffic
	Virtual time CSMA
	Window protocols

	RETHER
	Switched real-time Ethernet networks
	Other approaches

	Other networks
	Real-time support in the higher layers
	Suitability for the At-Home Anywhere project

