
A Real-Time Ethernet Network at Home

F. Hanssen, P. Hartel, T. Hattink, P. Jansen, J. Scholten, J. Wijnberg
Distributed and Embedded Systems group

Faculty of Computer Science — University of Twente
E-mail: hanssen@cs.utwente.nl

Abstract
This paper shows the current state of our research into a
home network which provides both real-time and non-real-
time capabilities for one coherent, distributed architecture.

It is based on a new type of real-time token protocol that
uses scheduling to achieve optimal token-routing in the net-
work. Depending on the scheduling algorithm, bandwidth
utilisations of 100% are possible. Token management, to
prevent token-loss or multiple tokens, is essential to sup-
port a dynamic, plug-and-play configuration.

Our network will support inexpensive, small appliances
as well as more expensive, large appliances. Small ap-
pliances, like sensors, would contain low-cost, embedded
processors with limited computing power, which can han-
dle lightweight network protocols. All other operations can
be delegated to other appliances that have sufficient re-
sources. This provides a basis for transparency, as it sepa-
rates controlling and controlled object.

1. Introduction

At first there were only a few main-frames shared by
many people. Then came the era of personal computing.
People do not have to share a computer with other people.
Life became much easier, but the relationship between hu-
man and computer is sometimes uneasy. One distinguish-
ing characteristic is that we are very much aware that the
computer is there and that we use it.

Slowly other types of computers entered our homes and
replaced their electronic or mechanical equivalents: em-
bedded systems in TV-sets, the central heating system, etc.
This led to the idea to connect these appliances to make
‘something new’. This is called ubiquitous computing. Its
highest ideal is to make computers “so embedded, so fit-
ting, so natural, that we use them without even thinking
about it”[11]. So, in theory we should be able to control or
get services from the house, from any device, at home or
via Internet or mobile phones.

Presently, a house has several separate distribution and
communication infrastructures: telephone, cable TV and
radio, PC network, central heating control, etc. In most

cases these infrastructures are isolated islands that inter-
connect only on rare occasions. These infrastructures can
generally be divided in three classes:
• entertainment: audio, video, games, etc. This class re-

quires high bandwidth and real-time responses. Char-
acteristic for this class is isochronous, streaming data.

• control: sensors and actuators, e.g. central heating con-
trol, fire detection, burglar alarm, etc. Control uses low
bandwidth, but requires a high degree of dependability.
Some devices may need real-time services.

• information: PC applications, Internet, etc. This class
uses bursty traffic, and only needs best-effort responses.
The first step to connecting appliances is one common,

inexpensive infrastructure that supports entertainment, con-
trol and information. This infrastructure may incorporate
different types of wired and wireless networks.

The first objective of our network is to be a network for
entertainment, control and information that supports both
real-time and non-real-time data, as for streaming media.
This network will be based on a new variety of a rotating
token protocol, giving bandwidth to the appliance that has
the token. In existing timed-token networks, every node in
the network is visited once during one rotation of the token.
In the worst case, timed-token networks have a low utilisa-
tion: ca. 33%. Main properties are described by Malcom
and Zhao [6] and Sevcik and Johnson [10]. Examples are
the IEEE 802.4 token bus, the IEEE 802.5 token ring and
FDDI.

We propose a new type of real-time token protocol, that
can be used on top of low-cost network hardware, e.g.
IEEE 1394 (Firewire), Bluetooth or ethernet. Unlike other
protocols, the token does not follow a fixed path, visit-
ing every node during each rotation. Instead, the token is
scheduled and follows a dynamic route, visiting only those
nodes needing attention. The scheduler is decentralised and
resides in every node. When needed, a node may resched-
ule the token and give it a new route through the network.
This happens when new connections are added, or exist-
ing connections are changed in the network. Before apply-
ing the new schedule, the node will check if this schedule
is feasible. Token management needs special attention to
make this type of network robust. Special measures have
to be taken if the token is lost (e.g. the device that holds the

mailto:hanssen@cs.utwente.nl


token is removed), or if multiple tokens exist.
Next we will give a short description of the project in

which our research takes place, describe the token protocol
we devised and discuss the simulation and prototype we
have built, and the results that have come out of it.

2. At Home Anywhere

Within the context of building a real-time network for
the home environment the following problems/challenges
exist:
1) Compatibility and interoperability: connecting appli-

ances does not necessarily mean that they can work to-
gether. Appliances use different data types, physical
networks, network protocols, etc.

2) Network incompatibility: even if appliances could use
the same network they would interfere with each other’s
proper operation. For instance, multimedia streams can
monopolise the network because of their large volume
and prohibit data transmission from crucial appliances,
like a fire alarm.

3) Data redundancy and incompatibility: certain appli-
ances have redundant storage with different formats,
e.g. minidisc (MD) recorder and video recorder. As a
consequence, MD music is only available through some
MD player, and the same applies for video. It is diffi-
cult to distribute audio and video if there is no common
data format among the appliances.

4) Resources: when even the smallest of appliances need
to be connected, costs for the embedded computer sys-
tem become increasingly important. To reduce costs,
these systems must be lean and be as small as possible.

5) Ad hoc configuration: the configuration of the system
must be dynamic. That is, a user of the system should
be able to add appliances to the network or remove them
without resetting the rest of the system. Setup and con-
figuration must be done automatically.

6) World wide interconnection: at some point the house
will be connected to the outside world, where different
networks and protocols are used, and different levels of
security are needed.
We will resolve, or give directions on how to resolve

these problems/challenges within theAt Home Anywhere
(@HA) research project. The @HA architecture consti-
tutes two types of rings (figure1). The inner ring is the
system at home (@Home). The second, outer ring is the
Internet. As there are many houses, the Internet contains
many @Homes, but from one house’s viewpoint there is
one @Home and all the rest belongs to the Internet. A gate-
way, or proxy, connects both worlds.

3. Resources

We focus mainly on item 4 (resources) and a little bit on
item 5 (ad hoc configuration) mentioned in section2. We

private
trusted

environment

domain
public

gateway/proxyInternet

@Home

Figure 1. @HA architecture

smart card
memory 8 ... 64kB

memory > 1MB
powerful processor

PIC state machine
memory < 1kB

aplication &
user interface

3D
 d

ev
ic

e

network stack

delegation

network stack

delegation30
0D

 d
ev

ic
e

physical network

3C
 d

ev
ic

e

network stack

Figure 2. @HA classification of devices

use a token-based network protocol to handle these issues.
Even resource-lean devices, like simple sensors, should

be connected to the network, but their size and price pre-
clude ‘heavy’ processors to realise that. We will study the
concept of delegation, or controlled invocation: small sys-
tems use their limited processing power to implement a net-
work stack to connect to the network and a small real-time
operating system kernel to handle the lightweight proto-
cols. But even this may be too resource-rich. Sometimes a
simple, network protocol handling state machine is enough.

Depending on the type of appliance, a balance must be
found between hardware and software. Hardware can range
from a simple programmable IC to a microprocessor, while
software can range from a simple state machine to a com-
plex programme. In our case we distinguish three classes
of appliances (figure2):
• 3C (3+ cent) appliance: simple devices that implement

only a network stack to connect to the system. A tem-
perature sensor is an example of such a device.

• 3D (3+ dollar) appliance: medium complex devices
that implement network stack and delegation protocols.
Examples are printers and scanners.

• 300D (300+ dollar) appliance: powerful devices, con-
trolled by a complex embedded computer. Examples
are TV-sets and PDAs.
Delegation is the basis for the first type of location trans-

parency (home location transparency): the user interface
(UI) and underlying application of any appliance are avail-
able anywhere in the house. This concept is not new. X [13]
separates application and UI, so each can execute on a dif-
ferent network node. But this system has a high informa-
tion exchange between client and server and is not suitable.



Our network at home constitutes a closed environment.
Therefore, delegators can trust delegatees and vice versa,
and devices understand a common base vocabulary. Then
it should be possible to base a delegation protocol on the
exchange of keyword-value pairs, with typing constraints
to ensure consistency and robustness. This is essentially
the same approach as taken in the CC/PP proposals [1], [7].

4. The token protocol

In order to schedule real-time traffic on a network, we
use scheduling algorithms, which are originally meant for
scheduling tasks on a processor. We view the network as
the processor and the different streams flowing through the
network as tasks. To make sure only one stream is being
sent at the same time, a token is used. This token contains
all information needed to make scheduling decisions.

When a token arrives at a node, the node looks in the
token to determine which stream is up for transmitting its
data. It also determines the length of time the stream may
transmit, this is called thetoken holding time(THT). When
this time has elapsed, the scheduler looks in the token to
determine which node holds the next stream that is to be
scheduled, and then sends the token there. So we route the
token through the network based on scheduling decisions,
and we call thistoken-routing.

We do not use a fixed schedule to route the token from
node to node through the network, the token is following a
dynamic schedule. We use pre-emptive Earliest Deadline
First (EDF) [5] as a scheduling algorithm for the token.
But our protocol does not preclude the use of e.g. Deadline
Monotonic [3] or Rate Monotonic scheduling algorithms,
or their non-pre-emptive variants. When no real-time traffic
is being transmitted, the token uses a simple round-robin
strategy to travel across the network, visiting every node.

To prevent token loss, a monitoring node is introduced:
the node that held the token last. When a node sends the
token to the next node, it becomes the monitor. The previ-
ous monitor stops monitoring. When the node holding the
token dies, the monitor will notice and send the token to the
node the deceased node should have sent the token to.

Adding new streams to the network can only be done by
the node holding the token, so we should make sure every
node gets the token regularly. The original design, as used
in the simulation, let the system take care of that during
the non-real-time traffic round. But tests using the proto-
type showed that is is better to define a real-time stream for
adding new streams, so it is guaranteed that every node gets
an equal share of the time in order to add new streams.

The validity of the bandwidth reservation of existing
streams is guaranteed by letting nodes, that wish to add a
stream, perform a feasibility analysis first. This feasibility
analysis determines whether the network will not be over-
loaded, so bandwidth guarantees can be maintained.

Adding new nodes to the network is done by regularly
broadcasting messages to the network, indicating nodes
wishing to join should reply to this broadcast. When they
do, they will be added to the list of nodes in the token, mak-
ing sure they will get the token after some time, so they too
can add real-time streams.

In order to make sure non-real-time traffic gets a piece
of the total network bandwidth available, we allocate only a
portion of the total bandwidth as usable for real-time traffic.
Currently we chose this portion to be 80%. This number
was chosen randomly, we have not yet done any research
on this, it may have to be chosen lower or higher, depending
on the network situation and traffic offered or requested.

5. Simulation and prototype results

Although no final choices have been made yet, for
demonstration of the prototype the two following areas of
application are chosen:
integrated home system

• central storage server;
• sensors controlled from anything suitable at home;
• audio and video anywhere at home;
• PC applications.

health care ubiquitous computing
• real-time wireless monitoring and alarms;
• real-time remote assessment in case of emergencies;
• secure access to files and information;
• consultation by video and audio.

5.1. The simulation

To see if our ideas were feasible and to get an idea of the
overhead our protocol would induce we have created a sim-
ulation of our real-time network token protocol on top of
ethernet [2]. This simulation currently supports real-time
and non-real-time data traffic, where the real-time data traf-
fic is scheduled using pre-emptive EDF. Various recovery
and network management techniques are implemented to
handle network or node failures. Also ad hoc configuration
of newly plugged-in network devices is supported.

In figure3 we show some results we obtained by simu-
lation [2]. The network simulates three real-time streams,
with periods of 0.01, 0.02, 0.05, 0.1, and 1 seconds. The of-
fered stream loads which are used, are 0.1, 0.2, 0.5, 0.7, and
0.8. Each simulation ran for five minutes, where the actual
measurements were taken between the10th and290th sec-
ond, and then averaged. The maximum real-time stream
utilisation was limited to 80% of the total network band-
width, so that 20% of the network bandwidth stays avail-
able for non-real-time traffic. The graph shows the actual
utilisation measured, including protocol overhead.

Some utilisations are zero. The combination of period
and offered load meant that all streams were rejected, be-
cause the computation time was below the minimal THT.



Total utilisation for 3 streams

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1 0.2 0.5 0.7 0.8
Offered load

T
ot

al
 u

til
is

at
io

n

0.01
0.02
0.05
0.1
1

Period

Figure 3. Simulation results

This limit prevents the THT from becoming too small to be
of use for the transmitting node. Also, for an offered load
of 0.8, not all streams were accepted because the utilisation
was limited to 0.8.

The graph shows that the protocol overhead is higher
with smaller periods, but not very high.

5.2. The prototype

We have built a prototype [12] of our token protocol on
top of Linux [4], where our token protocol is situated be-
tween the network and link layer of the OSI model, or be-
tween the IP and the ethernet layer in Linux. The token is
scheduled using EDF. This prototype revealed that certain
modifications to the original design were necessary: adding
of nodes and streams to the network was achieved using
non-real-time traffic in the original design, but using real-
time traffic for this turned out to give better results. Also the
fact that different computers have a different sense of time
(all clocks are not equal) made changes necessary. These
are not discussed here, since clock synchronisation proto-
cols are still being looked into, and the subject of clock
synchronisation is not within the context of this text.

It also showed that Linux is not good in providing ac-
curate timing. Tests conducted using RT-Linux [9] and
RTAI [8] provided much better results in this area, making
them much more suitable for building our network.

Figure 4 shows results of bandwidth measurements
conducted between two hosts, using UDP to create four
streams [12]. The graph shows the average bandwidth ob-
tained against the amount of data transmitted. The actual
bandwidth is lower because of overhead caused by our to-
ken protocol and UDP. The graph shows this combined
overhead to be ca. 10%. The large fluctuations on the left
side of the figure are due to computational inaccuracies.

We also conducted tests where the network was delib-
erately disturbed. These showed that our token recovery
procedures work well. And a test lasting for one month,
in which numerous node additions and removals occurred,

0 10000 20000 30000 40000 50000
KB

0

200

400

600

800

1000

A
ve

ra
ge

 K
B

/s

1000 KB/s
500 KB/s
200 KB/s
100 KB/s

Figure 4. Prototype test results

showed that collisions, which ruin predictable behaviour of
ethernet, did not occur during this period.

6. Concluding remarks

This paper describes our current state of research for
a real-time network at home. Already we have success-
fully built a simulation and a prototype of our networking
ideas. These can achieve a network utilisation of 100%,
have a straightforward feasibility analysis for the real-time
streams, and can quickly recover from network errors while
doing a good job of maintaining soft real-timeness of the
real-time streams.

We are currently looking into IEEE 1394 (Firewire) and
IEEE 802.11b (Wireless LAN) as a base network protocol
for our network, and we are looking into time synchronisa-
tion protocols to solve the timing problems between nodes.

References
[1] CC/PP Working Group web site,http://www.w3.org/

Mobile/CCPP/
[2] Tjalling Hattink, HOTnet, a real-time network protocol, Mas-

ter’s thesis, University of Twente, 2001
[3] J. Leung and J.W. Whitehead, On the Complexity of Fixed-Priority

Scheduling of Periodic, Real-Time Tasks,Performance Evaluation,
2(4):237–250, 1982

[4] Linux web site,http://www.linux.org/
[5] C.L. Liu and J.W. Layland, Scheduling Algorithms for Multipro-

gramming in a Hard Real-Time Environment,Journal of the ACM,
20(1):40–61, 1973

[6] N. Malcom and W. Zhao, The Timed Token Protocol for Real-Time
Communications,IEEE Computers, 10(1):35–41, January 1994

[7] Resource Description Framework web site,http://www.w3.
org/RDF/

[8] Real-Time Application Interface for Linux web site,http://
www.aero.polimi.it/˜rtai/

[9] Real-Time Linux web site,http://www.fsmlabs.com/
[10] K.C. Sevcik and M.J. Johnson, Cycle Time Properties of the FDDI

Token Ring Protocol,IEEE Transactions on Software Engineering,
SE-13(3):376–385, March 1987

[11] Mark Weiser, Hot Topics: Ubiquitous Computing,IEEE Computer,
26(10):71–72, October 1993

[12] Jurriaan Wijnberg, Prototyping the real-time ‘HOTnet’ network pro-
tocol on Ethernet, Master’s thesis, University of Twente, 2002

[13] X Window System web site,http://www.x.org/

http://www.w3.org/Mobile/CCPP/
http://www.w3.org/Mobile/CCPP/
http://www.linux.org/
http://www.w3.org/RDF/
http://www.w3.org/RDF/
http://www.aero.polimi.it/~rtai/
http://www.aero.polimi.it/~rtai/
http://www.fsmlabs.com/
http://www.x.org/

	Introduction
	At Home Anywhere
	Resources
	The token protocol
	Simulation and prototype results
	The simulation
	The prototype

	Concluding remarks
	References

