
Scheduling and resour ce allocation
with Real-Time Lin ux

Ferdy T.Y. Hanssen

30th October 1998

University of Twente
Department of Computer Science

Graduation committee
Ir. P.G. Jansen

Dr. A.L. Schoute
Dr. Ir. G.J.M. Smit

i

Summary

This report is about enhancing Real-Time Linux by adding to it an Earliest Deadline
First scheduler, which can be used instead of the existing fixed priority scheduler.

Moreover real-time scheduling has been considered in combination with resource
allocation. The Earliest Deadline First algorithm is combined with the Stack Re-
source protocol in a special variant, where the real-time tasks have been modeled as
transactions.

Concerning the implementation the interface which is used to manage real-time
tasks has been redesigned.

Furthermore several tools have been developed in order to debug and test the
implementation. These tools provide information in both a graphical and a textual
form.

A series of tests have been executed to measure the scheduling overhead. The
base overhead appears to be relatively high, but several improvements are suggested.

ii

Samenvatting

Dit verslag behandelt een uitbreiding op Real-Time Linux door er een Earliest Dead-
line First scheduler aan toe te voegen, die gebruikt kan worden in plaats van de
bestaande vaste-prioriteit scheduler.

Verder is real-time schedulen in combinatie met resource allocatie in overweging
genomen. Het Earliest Deadline First algorithme is gecombineerd met het Stack
Resource protocol in een speciale variant, waar de real-time taken als transacties
zijn gemodelleerd.

Betreffende de implementatie is de interface die gebruikt wordt om real-time
taken te verzorgen, herontworpen.

Daarnaast zijn er verschillende gereedschappen ontwikkeld om de implementatie
van fouten te ontdoen en te testen. Deze gereedschappen verschaffen informatie in
zowel grafische als textuele vorm.

Een serie tests is uitgevoerd om de scheduling overhead te meten. De basis
overhead lijkt relatief hoog te zijn, maar er worden verscheidene verbeteringen voor-
gesteld.

iii

Acknowledgements

This report contains the results of my graduation assignment. I would like to thank
Ir. P.G. Jansen, Dr. A.L. Schoute, and Dr. Ir. G.J.M. Smit, who formed my grad-
uation committee, for their support, understanding, and patience during the time I
needed to finish this assignment.

For reviewing early versions of this report I would also like to thank Robert
Boermans, Tjalling Hattink, and Koen Kornet.

iv

Contents

1 Introduction 1

2 Scheduling and resource allocation 2
2.1 Earliest Deadline First scheduling method 2
2.2 Real-time transactions . 3
2.3 The Stack Resource protocol 4

3 Linux and real-time properties 6
3.1 Linux itself . 6
3.2 Kurt . 6
3.3 RT-Linux . 7
3.4 Real-time Linux extension chosen 8

4 Design 10
4.1 An Earliest Deadline First scheduler for RT-Linux 10
4.2 Using resources with RT-Linux 11
4.3 Task and resource structures location 12
4.4 Set functionality . 12
4.5 Debugging functionality . 13

5 Implementation 15
5.1 Important data structures . 15
5.2 The scheduler . 17
5.3 Critical sections . 20
5.4 The process stack . 21
5.5 The information module . 22

6 Testing 23
6.1 Tools used for debugging and testing 23
6.2 Test setup . 28
6.3 Test results . 30
6.4 Interpretation of test results . 32

7 Conclusions 34

8 Recommendations for further research 36

A Abbreviations 37

B Bibliography 38

Contents v

C Scheduler events listing grammar 39

D Test results 40

E Test results with sample standard deviations 45

1

Chapter 1

Introduction

This report contains the results of a graduation assignment which consisted of de-
signing and implementing the Earliest Deadline First scheduling algorithm with the
Stack Resource protocol on Real-Time Linux.

The assignment was born out of the idea that it would be desirable to have a
real-time system to experiment with. Furthermore this real-time system had to be
licensed in such a way, that it wouldn’t be necessary to contact anyone or pay huge
licensing fees when a change in the system was to be made. This led to the idea
whether it was possible to take Linux and modify it in such a way that it is possible
to run real-time experiments on it.

So the project goal was to create a Linux-based real-time system with which it
would be possible to experiment with real-time scheduling algorithms and resource
allocation policies. This report discusses the use of the Earliest Deadline First
scheduling algorithm and the Stack Resource protocol for resource allocation in
particular.

Chapter 2 deals with the theory behind real-time Earliest Deadline First schedul-
ing and the Stack Resource protocol, making use of real-time transactions. And
chapter 3 discusses some existing real-time extensions to Linux.

In chapter 4 the design regarding EDF scheduling in Real-Time Linux with
resource allocation using the Stack Resource protocol is discussed. Chapter 5 goes
into the implementation of this. The details to the tests with this implementation
can be found in chapter 6.

In chapter 7 the conclusions are presented and some propositions for further
research are presented in chapter 8.

Appendix A contains a list of all abbreviations used in this report, with their
meanings and appendix B contains the bibliography. Appendix C contains the
grammar of a language used to describe so-called scheduler events and appendices
D and E contain the test results.

2

Chapter 2

Scheduling and resource allocation

In this chapter a background is presented to the scheduling and resource allocation
algorithms used in the remainder of this report. The article [Jans98] is extensively
used as a source for this information.

2.1 Earliest Deadline First scheduling method

The Earliest Deadline First (EDF) scheduling algorithm, presented in [Liu73], works
with the following rules:

• each task is assigned a priority;
• as time proceeds, and the deadline of a task comes closer, its priority increases

proportionally;
• the task with the highest priority is allowed to run.

When resources have to be shared among several tasks, and these tasks have to
enter a mutually exclusive critical section to use these resources, phenomena like
blocking, priority inversion, or transitive waiting may occur. Blocking occurs when
a higher priority task has to wait for a resource held by a lower priority task to
be released. Priority inversion happens when a high priority task is waiting for the
release of a resource held by a low priority task which is pre-empted by a medium
priority task. Transitive waiting occurs when a task is waiting for the release of a
resource held by another task, which is waiting for the release of a resource held by
another task, which is waiting for the release of a resource held by another task, i.e.
a chain of tasks waiting for the release of a resource held by a predecessor.

A task may have a static or a dynamic priority. Static priorities do not vary with
time, dynamic ones do. Note that in EDF a deadline can be expressed as a static or
a dynamic priority. Mostly a deadline interval — from release time to deadline —
is associated with a static priority while, in the context of this report, an absolute
deadline is associated with a dynamic priority.

Tasks are ordered by priority by the scheduler, and then assigned CPU time
in the resulting order by the dispatcher. In dynamic real-time systems, including
RT-Linux, these are often combined into one entity, referred to as “the scheduler”.
In the remainder of this report both will be referred to as the scheduler.

The scheduler can execute several resource allocation protocols, in order to con-
trol the execution of processes in such a way that blocking, priority inversion, or
transitive waiting are limited or avoided. One of these protocols is the Stack Re-
source protocol (SRP), which was presented in [Bake91].

2.2. Real-time transactions 3

SRP limits blocking, and avoids priority inversion as well as transitive waiting.
The basic idea is to make room for a high priority task by not allowing pre-emption
of a low priority task by any medium priority task, if the high and low priority
task share at least one resource. This limits blocking to a single task only, or more
precisely, to a single critical section only. This implies the impossibility of transitive
waiting and, consequently, it implies the impossibility of deadlock.

The implementation using EDF with SRP discussed later in this report is based
on the following task model.

2.2 Real-time transactions

Tasks are based on transactions. When a transaction starts, it simultaneously ac-
quires all the resources needed to complete the transaction. During the transaction,
resources can only be released. A transaction completes when it has released all
its resources. Priority inheritance is applied dynamically whenever a high prior-
ity transaction has to wait for resources in use by a lower priority transaction, i.e.
the lower priority transaction acquires the priority of the high priority transaction.
This avoids pre-emption of low priority transactions and speeds up the release of
resources.

With tasks being based on transactions the use of critical sections is simplified
immensely. It makes the model straightforward with the positive consequences of a
low administration overhead and a clear schedulability analysis.

The fact that real-time transactions claim all resources needed for a single run
at the start of that run, even if that resource is only used near the end of that
particular run, is also a disadvantage. That resource is then claimed longer than
strictly necessary. But this disadvantage is compensated for by the low overhead
and the clear schedulability analysis.

Transaction
state

A transaction may be sleeping or ready. The ready state is split up into released,
running, and pre-empted.

A transaction is put into the administration after it is admitted to the system.
Upon administration entrance it is put into the sleeping state. At its release time,
it enters the ready state.

In the ready state, a transaction is released while it is waiting for the CPU.
When it gets the CPU, it becomes running. If another higher priority transaction
pre-empts this transaction, it enters the pre-empted state. And at the end of a
transaction, it becomes sleeping again.

When a transaction is removed from the system, it leaves the administration.

Transaction
model

A transaction, denoted τi, is a member of the set of all transactions
T = {τ1, τ2, . . . , τn}.

Definition 1 (Transaction) A transaction τi is defined by a tuple of static param-
eters (Di, Pi, Ci, Ri).

2.3. The Stack Resource protocol 4

Here Di is the deadline interval. Pi is the time interval between two successive
invocations, the period. Ci is the worst-case run-time interval1 τi takes to complete.
And Ri is the set of mutually exclusive resources used by τi. If two transactions
τi and τj require the same resource (Ri ∩ Rj 6= ∅), then they are not allowed to
pre-empt each other.

Definition 2 (Invocation) An invocation, denoted τa
i , is defined by the tuple

(τi, r
a
i , da

i).

Here τa
i is the ath invocation of τi, the first invocation of τi is τ0

i . τa
i is associated

with the parameters (ra
i , da

i), where ra
i is the absolute release time from which invo-

cation τa
i may run, and da

i is the absolute deadline at which invocation τa
i must be

completed. Note that Di = da
i − ra

i , da
i ≤ ra+1

i , and ra+1
i − ra

i ≥ Pi for any i ≥ 1,
a ≥ 0.

A transaction or invocation with a priority smaller than or equal to a running
invocation may not pre-empt that running invocation. With the SRP the priority
is derived from the absolute deadline.

If a transaction τi must be executed before τj then there exists a precedence
relation between them, denoted by τi ≺ τj . Precedence relations do not form a
problem for a scheduler, but they do complicate a schedulability analysis.

2.3 The Stack Resource protocol

The Stack Resource protocol uses ceilings. The essentials of a variant of this protocol
using floors — the inverse of ceilings — and pre-emption levels will be described next.

In SRP the ceiling of a resource refers to the highest static priority of all tasks
that may ever use that resource. In the remainder of this text deadline interval will
be used instead of priority and consequently floor instead of ceiling.

The floor DR of a resource R is defined as the size of the shortest deadline interval
Di of any transaction τi that requires R:

DR = min{Di|R ∈ Ri}
The minimum of all floors of a transaction τi is defined as the pre-emption

deadline ∆i of a transaction τi. It is defined as follows:

∆i =

{
Di if Ri = ∅
min{DR|R ∈ Ri} otherwise

∆i is a static property of τi and can be computed off-line for a given set T . Of all
currently running and pre-empted invocations, the one with the smallest pre-emption
deadline is denoted with τ l

r, and that smallest pre-emption deadline is denoted with
∆r.

Definition 3 (SRP) The Stack Resource protocol is defined by the following rules:

1. released but not yet running or pre-empted invocations are ordered to their
absolute deadlines da

i ;
1Run-times are used mainly in conjunction with a quality of service schedulability analysis, they

are not needed by the scheduling algorithm.

2.3. The Stack Resource protocol 5

2. the invocation τ b
i with the shortest dynamic deadline, say db

i , is selected for
CPU competition;

3. τ b
i will pre-empt the running invocation τ l

r iff (Di < ∆r) ∧ (db
i < dl

r).

Due to the last-in first-out property of the SRP it may be concluded that the
running invocation is on top of a stack of pre-empted invocations.

6

Chapter 3

Linux and real-time properties

This chapter presents two existing real-time extensions to Linux, and which exten-
sion was chosen for implementing EDF with SRP.

3.1 Linux itself

Linux itself is a time-sharing multitasking operating system, capable of soft real-
time scheduling. It provides three scheduling algorithms, as required by the POSIX
standard, part 1 [IEEE96]. These three scheduling algorithms are Round-Robin
(RR), First-In First-Out (FIFO), and a Linux-specific algorithm, which is the default
for all processes. Processes which are scheduled according to the RR or FIFO
algorithm are at best soft real-time. Although soft real-time can be useful at times,
it is not always “good enough”.

Take a robotic vehicle for example: when a robotic vehicle is nearing an obstacle,
and it detects this, it has to be guaranteed that it doesn’t collide with it, because
possible damage to the robotic vehicle has to be prevented as much as possible.
So it is needed to have a system which can guarantee that the time between the
detection of the obstacle and the action required to prevent a collision is bound.
Soft real-time systems cannot guarantee this, hard real-time systems are needed for
this. What extensions to Linux are available which provide something better than
soft real-time?

Searching on the Internet produced two real-time extensions to Linux. The first is
called Real-Time Linux [Bara98], developed at the Department of Computer Science
at the New Mexico Institute of Mining and Technology. The second is called KU
Real-Time Linux [Srin98], developed at the Information and Telecommunication
Technology Center at the University of Kansas. These will be dealt with in the
following sections in the opposite order.

3.2 Kurt

The KU Real-Time Linux (Kurt) system is a set of extensions to a standard Linux
system, making it possible to create a system which will respond to certain events
within a predefined time. They call it a firm real-time system, which is something
between a soft real-time system and a hard real-timesystem. It sets up the system
so that it can run in two modes, a normal mode and a real-time mode. When
the system is in normal mode, it operates just like any other Linux workstation.
But when the system is operating in real-time mode, it only runs processes which

3.3. RT-Linux 7

' $
' $
' $

' $
real-time nucleus

Linux kernel

Linux modules

user processes

RT-Linux modules

Figure 3.1: RT-Linux architecture

have been designated as real-time processes, and none other. In real-time mode the
system can no longer be used as a generic workstation.

Another disadvantage of Kurt in the context of this assignment is the fact that
it reads its schedule from a predefined location, be it memory or a file, and then
executing that schedule while in real-time mode. It contains a static scheduler.

3.3 RT-Linux

The Real-Time Linux (RT-Linux) system follows a different approach. It lets non-
real-time processes work together with real-time processes. The non-real-time pro-
cesses are only allowed to run when there are no real-time tasks which need the
CPU. A lot more information about RT-Linux can be found in [Bara98], [Bara97b],
[Bara97a], and [Yoda95].

The architecture of RT-Linux is as follows: there is a small real-time nucleus at
the heart of the system. This real-time nucleus contains the basic real-time support
as real-time timing functions and real-time interrupt handlers. To use real-time tasks
at least two real-time modules need to be loaded, containing the real-time FIFO
handler and the real-time scheduler. Figure 3.1 shows a graphical representation of
the RT-Linux architecture.

The Linux kernel runs on top of the real-time nucleus as a real-time task, with
the lowest possible priority. This ensures the Linux kernel doesn’t interfere with
the timing for the actual real-time tasks, and the normal Linux tasks only get to
run when there is no real-time task which needs CPU time, i.e. no real-time task is
released.

The timer — via IRQ #0 — controls the scheduling of real-time tasks — which
is done in the function rt schedule() — and when the Linux kernel is running, the
normal tasks are scheduled — via the function schedule(). The real-time scheduler
is a dynamic scheduler. Figure 3.2 depicts this.

The generic Linux kernel takes care of all the non-real-time tasks, just like it

3.4. Real-time Linux extension chosen 8

t-

�

real-time tasks

rt schedule()�
�
�
� -IRQ #0

6

-

�

normal tasks

schedule()

r is the Linux kernel real-time task

Figure 3.2: RT-Linux scheduling

normally does. All hardware is controlled by the Linux kernel as well, unless the
real-time nucleus is provided with a special, real-time enabled, device driver. Only
then can a peripheral be used from within a real-time task. The “normal” device
drivers present in Linux cannot be used, because their designers usually didn’t take
a hard real-time environment into consideration.

All real-time tasks run in kernel space, which is a disadvantage. This makes it
very difficult to debug real-time processes, and only the slightest error in the code
of a real-time process is enough to crash or hang the entire system. The kernel
doesn’t enforce any limitations upon the real-time tasks, so one has to be careful
when writing code in a RT-Linux environment.

A typical RT-Linux application consists of a set of real-time processes and a set
of normal non-real-time user processes. The real-time processes may communicate
with a set of peripheral devices using either a special real-time enabled device driver
or by programming the peripheral directly from the real-time tasks. Devices should
not be shared between real-time tasks and the non-real-time Linux kernel. Because
using a device from the non-real-time Linux kernel may destroy any real-time abilities
that device has in the system.

Communication between real-time tasks and non-real-time processes is possible
through so-called real-time FIFOs. The user processes can take care of storing infor-
mation on disk, post-processing data, or any other non-real-time task. A graphical
representation of the architecture of a typical RT-Linux application can be found in
figure 3.3.

3.4 Real-time Linux extension chosen

RT-Linux was chosen for two reasons. The first reason was that RT-Linux appeared
not as complicated as Kurt after a first glance, and also after a more thorough

3.4. Real-time Linux extension chosen 9

user processesxy
↑ ↓

RT-FIFO RT-FIFO
↑ ↓

Linux kernel real-time processes

l l�� ��device · · ·
�� ��device

l�� ��real-time device

Figure 3.3: Architecture of real-time application

examination.
The second reason was the fact that RT-Linux already contained a dynamic

scheduler, where Kurt only contained a static scheduler. With the assignment being
to implement EDF, a dynamic scheduling technique, the choice was quickly made.

10

Chapter 4

Design

This chapter presents the design of enhancing RT-Linux with EDF and SRP.

Standard
RT-Linux

The standard RT-Linux pre-emptive scheduler works with static priorities. When
a real-time task is defined a priority has to be specified, and higher priority tasks
take precedence over lower priority tasks. Both aperiodic and periodic tasks can be
used, and the priority of a periodic task bears no relation to its period. Deadlines
are not used, and provisions for resources are not present.

4.1 An Earliest Deadline First scheduler for RT-Linux

Ismael Ripoll has written a pre-emptive Earliest Deadline First scheduler for RT-
Linux [Ripo97b]. Examination of this scheduler was started with.

It uses four task states: none, dormant, delayed, and ready. These states corre-
spond with the states introduced in section 2.2 as displayed in table 4.1.

Initially all tasks are in the none state, which means they don’t exist as far as the
scheduler is concerned. Henceforth they will not be scheduled. When a task is set
up, it is put into the dormant state. The task is then still not a periodic task. In the
original RT-Linux scheduler this is the “resting place” for all aperiodic tasks. But
the EDF scheduler does not support aperiodic tasks — the original field containing
the static priority is not used in EDF — so at this moment the dormant state is
used only as an intermediate state for the task being set up.

When the task is turned into a periodic task — i.e. its period, relative deadline
and first absolute release time are set — it truly enters the scheduling mechanism,
and it is put into the delayed state.

At the time of a process’ release, that process enters the ready state, and stays
there until it is finished with its work for this period, when it re-enters the delayed
state. Figure 4.1 displays this, together with the RT-Linux functions which take
care of each state transition.

To properly implement SRP it is needed to divide the ready state in the exist-
ing EDF scheduler into three states representing the states used in the transaction
model. The ready state is split up into a ready state, a running state, and a pre-
empted state, which correspond to respectively the released, running, and pre-empted
states from the transaction model of section 2.2.

4.2. Using resources with RT-Linux 11

RT-Linux task state transaction state
none not in the administration
dormant no equivalent
delayed sleeping
ready released or running or pre-empted

Table 4.1: State correspondence between RT-Linux EDF and transactions

#
"

!none

#
"

!dormant

#
"

!delayed

#
"

!ready

' -rt task init() '

%

&

$� rt task delete()

6
rt task suspend()

?

rt task make periodic()

rt task wakeup()

6
rt task wait()

?
rt schedule()

Figure 4.1: RT-Linux task state transition diagram

4.2 Using resources with RT-Linux

Already having a scheduler, it was only necessary to find a way to use resources. To
the scheduler resources are nothing more than a mutually exclusive critical section.
When SRP is used with transactions, the protocol already guarantees mutual exclu-
sion, so the functions to actually enter and leave a critical section do nothing more
than checking if a critical section is indeed not entered twice and providing infor-
mation on when a task actually enters and leaves the critical section. The following
functions were selected to perform the necessary operations:

• a function to initialize a critical section, to be called rt cs init();
• a function to clean up a critical section when it is no longer needed, which

would be called rt cs delete();
• a pair of functions to modify the state of which task is using which resource:

one to indicate that a real-time task uses a certain resource, to be called
rt cs used by task(), and one to indicate that a real-time task no longer uses
a certain resource, which would be called rt cs no longer used by task(),
these functions should also take care of recomputing all necessary pre-emption
deadlines ∆i;

• a function to let a real-time task enter one or more critical sections simulta-
neously, to be called rt cs enter();

4.3. Task and resource structures location 12

• a function to let a real-time task leave one or more critical sections simultane-
ously, which would be called rt cs leave().

4.3 Task and resource structures location

The original schedulers all depend on the programmer to provide adequate memory
for placing the structures to use for task management, and keep a single linked
list which contains the active task structures. But this makes the system depend
upon the programmer of the application to provide memory which will then be used
explicitly for system management. Memory used explicitly for system management
should be managed explicitly by the system.

So it was decided to use an array to store the structures necessary for the manage-
ment of tasks and resources. But to avoid unnecessary slow-downs at least a single
linked list would be needed for use inside the scheduler, so it wouldn’t have to look
at all task structures, but only at those actually used. During the implementation
it was found to be much easier for certain operations — notably rt task delete —
to keep a double linked list.

4.4 Set functionality

It was also needed to have a data structure to be able to store which process is
using which resource and which resource is being used by which process. These two
sets of information are redundant, because the one can be got from the other, but
having both speeds up the process of resource reservation detection and simplifies
the signalling of errors to processes calling the rt cs * functions.

A set data structure is ideal for this. Unfortunately the programming language
that was going to be used, C, doesn’t provide sets. So a new data type would be
needed, including a set of operations to work with it. The operations which would
certainly be needed, are:

• adding an element to a set,
• removing an element from a set,
• clearing a set,
• checking if a set is empty, and
• checking if a set contains a certain element.

This data type is also very useful when a schedulability analysis algorithm has
to be implemented like the one in [Laan97].

4.5. Debugging functionality 13

4.5 Debugging functionality

The last item that surely would be needed was a way to debug the system. The EDF
scheduler by Ismael Ripoll already contained a debugging system using a real-time
FIFO. The scheduler put some information about the actual schedule — absolute
process release time, absolute process deadline, absolute process start of execution,
and absolute process end of execution — into the real-time FIFO, and a user process
read the real-time FIFO and put the information into a format, which is readable
by both man and machine. He also provided a program to display that data in a
graphical manner.

This setup was taken as a basis, particularly because it is not possible to use
conventional methods to debug a real-time process running in kernel space. So the
man-machine-readable format he used was enhanced to better suit this assignment
— a bit more information from the scheduler was required — and the result of that
is presented in appendix C. The man-machine-readable format is called a schedule
events listing. This was done because it is easier to derive quantifiable data from a
well-defined file. To understand the grammar better, a fictional, and commented,
example is given in figure 4.2. Note that the actual events do not have to appear in
chronological order.

A few programs to transform the schedule events listing into a form more easily
interpretable by humans would also be needed. At least a verbose textual listing of
events and a graphical representation would have to be generated. More information
about these programs is given in section 6.1.

To debug resource allocation and usage another real-time FIFO would have to
be used to track a little bit more information — the actual state of use of the
mutually exclusive semaphore — concerning resource claim and release events. A
new grammar was, however, not designed for this. A program was written to simply
transform the data coming out of the real-time FIFO into human readable text, as it
would only be used for debugging. All interesting statistical data — time of resource
claim and release — is already provided for in the schedule events listing.

4.5. Debugging functionality 14

Start of header, containing definitions

Define three tasks

TASK 1 "First task"

TASK 2 "Second task"

TASK 3 "Third task"

Define two resources

RESOURCE 1 "First resource"

RESOURCE 2 "Second resource"

End of header

Start of body, containing actions

:BODY

ACTI 1 0 250 # Task 1, release at 0, deadline at 250

ACTI 2 0 500 # Task 2, release at 0, deadline at 500

ACTI 3 100 200 # Task 3, release at 100, deadline at 200

RSCL 1 1 10 # Task 1 claims resource 1 at 10

EXEC 1 0 100 # Task 1 runs from 0 to 100

RSCL 3 2 100 # Task 3 claims resource 2 at 100

RSFR 3 2 140 # Task 3 frees resource 2 at 140

EXEC 3 100 160 # Task 3 runs from 100 to 160

ACTI 3 300 400 # Task 3, release at 300, deadline at 400

RSFR 1 1 190 # Task 1 frees resource 1 at 210

EXEC 1 160 220 # Task 1 runs from 160 to 220

RSCL 2 2 250 # Task 2 claims resource 2 at 250

REDEF DEADLINE 2 300 350 # Deadline of task 2 is redefined to be 350 at 300

RSFR 2 2 350 # Task 2 frees resources 2 at 350

EXEC 2 220 350 # Task 2 runs from 220 to 350

RSCL 3 2 350 # Task 3 claims resource 2 at 350

RSFR 3 2 390 # Task 3 frees resource 2 at 390

EXEC 3 350 395 # Task 3 runs from 350 to 395

End of body

Figure 4.2: A sample schedule events listing

15

Chapter 5

Implementation

In this chapter the actual implementation of EDF with SRP on RT-Linux is dis-
cussed. The previous chapter discussed the design, this chapter will discuss several
implementation-specific aspects of that design.

First the important data structures are explained, followed by an explanation of
the scheduler, the critical sections, the process stack handling functions, and finally
some functions to provide some information about the task and resource sets are
discussed.

In the remainder of this report the terms task, process, and transaction will be
used alternately, meaning a task from the transaction model.

The version of RT-Linux used as a basis for this implementation is RT-Linux
version 0.6 upon Linux version 2.0.35.

5.1 Important data structures

The set data
type

The declaration of the set data type is given in figure 5.1. The bits of a 64-bit word
are simply used to designate the elements of a set. Consequently, a set may contain
maximally 64 elements, and henceforth, at most 64 real-time tasks — including the
Linux kernel task — and 64 resources can be defined. The compiler that was used
— gcc version 2.7.2.1 — cannot work with a simple data type of more than 64 bits
on a CPU of the Intel 80x86 class. If more than 64 real-time tasks or resources are
required, the set data type has to be changed, and will then get considerably more
complicated. And more complicated data structures take more time to work with.

The declarations of the operations which function on this data type are given in
figure 5.2, and table 5.1 tells which operation exactly does what.

The real-time
task data type

Figure 5.3 contains the declaration of the RT TASK data type. The element stack

is the stack-pointer of the real-time task — each real-time task has to have its own
stack —, and uses fp indicates if the real-time task uses floating point arithmetic or
not. With an Intel 80x86 class processor it is important to know whether a real-time
task uses the floating point unit of the CPU, because if it does not, the real-time
task switch overhead is lower, as the floating point state doesn’t have to be saved.
The magic field is set to a special predefined value if the task structure is in use,
and is set to something else if it is not.

The state part contains the state of the real-time task, which is one of RT TASK

NONE, RT TASK DELAYED, RT TASK DORMANT, RT TASK PREEMPTED, RT TASK READY, and
RT TASK RUNNING. These task states have already been explained in section 4.1. The
pointer stack bottom points to the bottom of the stack, and is used when the task

5.1. Important data structures 16

typedef __u64 __set;

typedef __set set;

Figure 5.1: The data type set

/* Macro to inquire about max. nr. of elements a set can contain */

#define SET_MAX_ELEMENTS (sizeof(__set) * 8)

#define SET_BOTTOM_ELEMENT 0

#define SET_TOP_ELEMENT SET_MAX_ELEMENTS

/* Constant sets */

#define SET_EMPTY 0

#define SET_FULL (~SET_EMPTY)

/* Macros to be used _outside_ expressions (s must be lvalue) */

#define SET_CLEAR(s) (__set) s = SET_EMPTY

#define SET_ADDALL(s) (__set) s = SET_FULL

#define SET_ADD(s,i) (__set) s |= ((__set) 1 << (i))

#define SET_REMOVE(s,i) (__set) s &= ~((__set) 1 << (i))

/* Macros to be used _inside_ expressions */

#define SET_CONTAINS(s,i) ((s) & ((__set) 1 << (i)))

#define SET_UNION(s1,s2) ((s1) | (s2))

#define SET_INTERSECTION(s1,s2) ((s1) & (s2))

#define SET_DIFFERENCE(s1,s2) ((s1) & ~(s2))

Figure 5.2: Operations for the set type

Operation Explanation
SET ADD(s,i) Assign s ∪ {i} to s

SET ADDALL(s) Assign U to s

SET BOTTOM ELEMENT Return value of lowest numerical value
which can be stored in a set

SET CLEAR(s) Assign ∅ to s

SET CONTAINS(s,i) Return i ∈ s

SET DIFFERENCE(s1,s2) Return s1 − s2

SET EMPTY Return ∅
SET FULL Return U
SET INTERSECTION(s1,s2) Return s1 ∩ s2

SET MAX ELEMENTS Return maximum amount of numbers
which can be stored in a set

SET REMOVE(s,i) Assign s ∩ (U− {i}) to s

SET TOP ELEMENT Return value of highest numerical value
which can be stored in a set

SET UNION(s1,s2) Return s1 ∪ s2

Table 5.1: Explanations of the set operations

5.2. The scheduler 17

enum {RT_TASK_NONE, RT_TASK_READY, RT_TASK_DELAYED, RT_TASK_PREEMPTED,

RT_TASK_RUNNING, RT_TASK_DORMANT};

struct rt_task_struct {

int *stack; /* HARDCODED in rt-task switch code! */

int uses_fp; /* THIS ONE IS TOO! */

int magic; /* Used to indicate this task is in use */

int state;

int *stack_bottom;

void (*fn)(int); /* Function to execute periodically */

int id;

RTIME P; /* Period */

RTIME resume_time; /* Absolute release time */

RTIME D; /* Deadline interval */

RTIME d; /* Absolute deadline */

RTIME Delta; /* Preemption deadline */

set R; /* Set of resources used by task */

struct rt_task_struct *next; /* Pointer to next active task_struct */

struct rt_task_struct *prev; /* Pointer to prev. active task_struct */

};

typedef struct rt_task_struct RT_TASK;

Figure 5.3: Data type RT TASK

is deleted. The pointer fn points to the code for the task, and id contains the task
identifier.

The P field contains the period, and resume time contains the next absolute
release time ra

i . Field D contains the relative deadline Di, and d contains the next
absolute deadline da

i . The Delta element contains the pre-emption deadline ∆i, and
field R contains the set of resources Ri this task uses. The fields next and prev are
used for the double linked list of tasks which are present in the system.

The critical
section data
type

The data type used for resources, or critical sections, is depicted in figure 5.4. The
magic field is again used to define when a particular structure is in use and when
it is not. The used field indicates whether the resource is currently being used, and
is used for checking if a resource is not used twice at the same time. The field id

contains the critical section identifier.
The set used by contains the set of tasks that have indicated to use this resource.

The D R field contains the floor DR of the resource.
The pointers next and prev are used for the double linked list of all resources in

use. The event field, finally, is used to transfer debugging information about this
resource to user space through a real-time FIFO.

5.2 The scheduler

The scheduler itself consists of one function: rt schedule(). It is invoked when a
task is finished, suspended, woken up, or when the timer goes off. It does not work
with a release time, but with a release interval. The idea behind such an interval is

5.2. The scheduler 18

typedef struct rt_cs_tp {

int magic;

int id;

int used; /* Indicates resource is in use (for debugging) */

set used_by; /* Set of indexes */

RTIME D_R; /* Floor */

#ifdef DEBUG

rt_event_tp event;

#endif

struct rt_cs_tp *next; /* Pointer to next active critical section */

struct rt_cs_tp *prev; /* Pointer to previous active critical section */

} rt_cs_tp;

Figure 5.4: Data type rt cs tp

#define RT_SCHED_GET_RELEASE_INTERVAL_LENGTH _IOR(200, 0x01, RTIME)

#define RT_SCHED_SET_RELEASE_INTERVAL_LENGTH _IOW(200, 0x02, RTIME)

Figure 5.5: The ioctl commands for the EDF scheduler

extern RT_TASK *rt_current;

#define rt_current_id ((rt_current)->id)

Figure 5.6: Declaration of rt current

that it should compensate for scheduling overhead, so its length would depend on
the computer system used. It means that a process will be released in the interval
[ra

i − t, ra
i], where t is the scheduler release interval length (SRIL). The disadvantage

to this approach is that a process can be released before its actual release time, and
thus can misread a certain value, if that value will only become available at the
actual release time of the process.

The scheduler release interval length can be set using two ioctl commands1 of
which the declarations can be found in figure 5.5, and it defaults to 0. The device
which should be used is /dev/rt sched, which uses major device number 10 — the
Linux misc device — and minor device number 200 in the current implementation.

A pointer to the task which is currently running is kept in the variable rt current,
and because the task identifier of the currently running task is needed frequently, a
macro rt current id has been defined. These declarations can be found in figure
5.6.

The function rt schedule() performs the following steps:

1. It searches the list of active tasks for those that can be released. Any task
that can be released in the scheduler release interval is released, i.e. its state
is changed to ready.

2. Check if the current task is finished, in which case it should be removed from
the process stack.

1An ioctl command is a command which can be sent to a part of the kernel using the ioctl

system call.

5.2. The scheduler 19

3. Now calculate the lowest pre-emption deadline ∆r by simply looking at the ∆i

of the process on top of the stack.
4. Then the scheduler determines which task is to run next, by picking the task

with the lowest absolute deadline.
5. Determine if the task just selected may pre-empt the process on top of the

stack by checking the conditions according to SRP. If it may not, the task on
top of the stack becomes the next task to run.

6. The scheduler now determines if the next task to run is going to be pre-empted
within a certain time interval by looking at the absolute release times of all
sleeping and released, but not pre-empted or running tasks.

7. If a pre-emptor has been found, set the timer right, otherwise don’t set the
timer — note that the last option cannot happen with at least one periodic
task.

8. If the new task to run is not the same as the one already running, pre-empt
the process which was running — i.e. make its state pre-empted — and put
ourselves on top of the stack. Then perform a task switch. The state of the
new task to run is set to running.

The current implementation provides no support for aperiodic tasks.

Task
management

In order to manage the real-time tasks, several functions are provided. Their decla-
rations can be found in figure 5.7.

The functions rt task init() and rt task make periodic() are used to set up
a task. The first function returns a task identifier, which is needed to call all other
functions. All other functions return 0 on success and all functions return a negative
error value on failure. This function is typically called from the init module()

function which is called whenever a module is loaded into the Linux kernel.
The rt task delete() function is used to withdraw a task from the system.

This function is typically called from the cleanup module() function, which is called
whenever a Linux kernel module is removed from the kernel.

The function rt task wait() is called when a task is finished with its work for
this period. It changes the task state to delayed and sets a new absolute release time
and a new absolute deadline. In the current implementation it is not necessary for
the real-time task to do this itself, as all periodic real-time tasks are running within
a framework, which is shown in figure 5.8.

The function rt task suspend() changes a task’s state from delayed to dormant.
A task should not suspend itself, unless it is very sure it will be woken up by
somebody else. The function rt task wakeup is its opposite, it changed a task’s
state from dormant back to delayed, and a task should never do this to itself.
These last two functions are not used in the current implementation, but left over
from the normal RT-Linux functions.

5.3. Critical sections 20

extern int rt_task_init(void (*fn)(int data), int data, int stack_size);

extern int rt_task_make_periodic(int id,

RTIME start_time,

RTIME period,

RTIME deadline);

extern int rt_task_delete(int task_id);

extern int rt_task_wait(void);

extern int rt_task_suspend(int task_id);

extern int rt_task_wakeup(int task_id);

extern inline void rt_use_fp(int flag)

Figure 5.7: Real-time task operations

void rt_periodic_task_frame(int data)

{

while (1) {

/*

* Calls to rt_cs_enter and rt_cs_leave are not strictly necessary,

* used only for debugging

*/

rt_cs_enter(rt_current->R);

rt_current->fn(data); /* fn() runs as a transaction */

rt_cs_leave(rt_current->R);

rt_task_wait();

}

}

Figure 5.8: Real-time task framework

5.3 Critical sections

Because the SRP combined with transactions guarantees mutual exclusion, the real-
time process programmer no longer has to worry about resource claims or releases.
He only has to specify which task uses which resource, and as a task runs, its re-
sources are automatically claimed and released. The function declarations pertaining
to resource management are displayed in figure 5.9.

The function rt cs init() is called to initialize a critical section. It returns a
critical section identifier on return when all went well, or a negative error value if it
did not. This critical section identifier is needed to call all other functions, which
return 0 on success or a negative error value if they executed unsuccessfully. This
function is, like rt task init(), typically only called from init module().

The rt cs delete() function removes a critical section from the system. And,
like rt task delete(), this function is also typically only called from cleanup

module().
The function rt cs used by task() is used to indicate which resource is used

by which task. Like rt cs init(), this is also typically called from init module().
The function rt cs no longer used by task() does the exact reverse of rt cs

5.4. The process stack 21

/*

* NEVER call these from RT tasks, ONLY call these from non-RT

* kernel functions (something like init_module and cleanup_module)

*/

extern int rt_cs_init(void);

extern int rt_cs_delete(int cs_id);

extern int rt_cs_used_by_task(int cs_id, int task);

extern int rt_cs_no_longer_used_by_task(int cs_id, int task_id);

extern int rt_cs_enter(set css);

extern int rt_cs_leave(set css);

Figure 5.9: Critical section operations

static RT_TASK *task_stack[RT_MAXTASKS];

Figure 5.10: Definition of the process stack

used by task(), and is, obviously, typically called from the cleanup module() func-
tion.

The functions rt cs enter() and rt cs leave() are currently used for debug-
ging only. Checking whether a resource is already in use — yelling if it is — and
actually marking the resource as used is done by rt cs enter(). Setting a re-
source’s state to unused is done by the function rt cs leave(). In the current
implementation they are called from the periodic task framework.

The current implementation does not provide support for a transaction to release
a resource “early”, i.e. before the end of its execution for a certain period.

5.4 The process stack

When a process becomes running it is put onto the stack of processes, In order to
handle this stack, a small kernel module was written.

The stack consists of a simple array of pointers to task structures. It is shown
in figure 5.10. As the stack can never contain more than the maximum number of
processes possible, the maximum size needed is known in advance. A simple array
index pointer is used to keep track of the stack pointer.

The declarations of the functions it provides can be found in figure 5.11. The
function stack push() pushes a task onto the stack, stack pop() removes the task
on top from the stack. The function stack top() returns the task structure which
is on top of the stack. Checking if the stack is empty can be done with the function
stack empty() and clear stack() makes the stack empty. This last function is
only necessary on initialization.

In order to debug the stack, a device called /dev/rt stack was added, together
with a couple of ioctl commands. The device /dev/rt stack currently uses major
device number 10 and minor device number 201 in the current implementation. The
ioctl commands available can be found in figure 5.12. The difference between the
dump and print commands is the verbosity of the output they generate.

5.5. The information module 22

extern int stack_push(RT_TASK *t);

extern void stack_pop(void);

extern RT_TASK *stack_top(void);

extern int stack_empty(void);

extern void clear_stack(void);

Figure 5.11: Stack functions

#define STACK_DUMP_STACK _IO(201, 0x01)

#define STACK_PRINT_STACK _IO(201, 0x02)

#define STACK_CLEAR_STACK _IO(201, 0x03)

Figure 5.12: The ioctl commands for the stack module

void dump_rt_tasks(void);

void dump_rt_critsects(void);

void partial_dump_rt_tasks(void);

void partial_dump_rt_critsects(void);

Figure 5.13: Informative functions

5.5 The information module

Wanting to know whether all these functions operate correctly, another module was
written which is able to dump all active task structures and all active critical section
structures. This module provides only four functions, two to dump the active task
structures and two to dump the active critical section structures. Their declarations
can be found in figure 5.13.

The functions that begin with partial dump only part of the structures, no-
tably the sets telling which task uses which resource, and the tasks’ periods Pi,
relative deadlines Di, and pre-emption deadlines ∆i. Their output is written to the
kernel log-files.

23

Chapter 6

Testing

In this chapter the tools and methods used to debug and test are presented, followed
by a discussion of the test setup and results.

6.1 Tools used for debugging and testing

In order to get some quantifiable data out of the scheduler and resource allocation
policy implementation, a collection of tools was written. These are very useful for
testing and debugging a scheduler and a resource allocation policy, and reporting a
collection of performance related numbers from a test run.

These tools are all normal non-real-time Linux processes. In order to commu-
nicate between the real-time environment and the tools two real-time FIFOs are
used. One to transfer information about the scheduling of processes and the time of
resource claims and releases, this one will be called sched-fifo. The other one is to
transfer debugging information about the resource claims and releases, notably the
state of the mutually exclusive critical section, this one will be called resource-fifo.

Because slight errors can have a big impact when writing code that is to function
in kernel space and because of the fact that a specialized kernel debugger is unavail-
able, debugging in the classical manner is impossible. This was the first reason such
tools were wanted. Wanting to know what the scheduler and resource allocator were
doing was the second. The idea came from the crono [Ripo97a] program by Ismael
Ripoll.

He used a real-time FIFO to transfer the scheduling events to a user space
program which displays it graphically on screen. The reason these new tools were
written is that crono wouldn’t function properly on the systems used and it would
take too much time figuring out how to get crono to work. It looked pretty complex
when it was examined, and it was concluded it would be easier to start building
a new version. The only advantage crono has over the new one is speed. Some
command line programs were also added to directly convert the list of schedule
events into a graphical or textual representation.

The names of the tools that have been written are as follows:

• diag2gif: creates a GIF file containing a graphical representation of the sched-
ule events listing it is given as input,

• diag2png: creates a PNG file containing a graphical representation of the
schedule events listing it is given as input,

• diag2txt: creates a text file containing a verbose textual representation of
the schedule events listing it is given as input,

6.1. Tools used for debugging and testing 24

• diag2xpm: creates an XPM file containing a graphical representation of the
schedule events listing it is given as input,

• diagview: opens a window containing an interactive graphical representation
of the schedule events listings it is given as input,

• diag2num: a modification to diag2txt to provide more compact input for
• dat2avg: which calculates average numbers for each task, useful to generate

test reports.

These tools are very useful for debugging, because it can immediately be seen
when the scheduler loses track with a given task set, and correct the situation. And
more severe errors1 are caught by the Linux exception handler, resulting in a nice
“Oops” on the display and in the kernel log-file. Then it is possible to trace the
place of the error, and to try to figure out which part of the source code matches
with the assembly code where the error occurs.

To ease the task of debugging and testing, a script was implemented, which
consists of these steps:

1. Load up the appropriate system modules:
• rt fifo new.o: this module contains the real-time FIFO device driver,
• rt stack.rkmo: this module contains the code for the stack that is used

to put pre-empted processes and the running process on,
• rt sched.rkmo: this module contains the code for the scheduler and

resource allocation policy,
• rt dump info.rko: this module contains the code for a few routines

which will dump information about all active real-time processes and
resources.

2. Optionally change the scheduler release interval length.
3. Start getevents in the background, this program will read a specified2 amount

of data from the sched-fifo.
4. Start rt cs getevents in the background, this program will read a specified2

amount of data from the resource-fifo.
5. Insert the module or modules containing the real-time processes.
6. While the real-time processes are running and the real-time environment is

generating lots of data about what is going on and getevents and rt cs -

getevents are collecting this data, wait until getevents and rt cs getevents

are finished.
7. Remove the module or modules containing the real-time processes.
8. Optionally remove the following real-time system modules:

• rt dump info.rko,
• rt sched.rkmo,
• rt stack.rkmo: with the current implementation removing real-time

tasks is a process which happens bluntly, resulting in various errors
when used with different sets of real-time tasks and resources after each
other due to inconsistent pre-emption deadlines and an overpopulated
stack; only rt stack.rkmo cannot be removed before rt sched.rkmo

1These more severe errors are typically problems with pointer handling: trying to follow a NULL

pointer, or trying to use a pointer to some previously deallocated kernel memory.
2This amount is specified on the command line as an option to the program.

6.1. Tools used for debugging and testing 25

and rt dump info.rko have been removed, due to inter-modular depen-
dencies,

• rt fifo new.o: it is not strictly necessary to remove this module, as
it doesn’t contain any known bugs, and there were no problems with
leaving this module in during testing.

9. Use bin2diag to translate the binary output from getevents into a textual
schedule events listing. The definition and a sample of the textual schedule
events listing was already given in section 4.5.

10. Optionally use the program rt cs bin2txt to convert the binary output from
rt cs getevents into a textual list of resource events.

11. Now there are several options:
• use diag2txt to construct a more readable list of events from the sched-

ule events listing, figure 6.1 contains a sample3,
• use any of diag2gif, diag2png, or diag2xpm to create a graphical rep-

resentation of the schedule events listing, an example of such a graphic
can be found in figure 6.2,
• use diagview to interactively view the schedule events listing, figure 6.3

contains a screen-shot of the program,
• use diag2num in association with dat2avg4 to extract the average exe-

cution time per process per period, the average delay between process
release and actual process execution, and the average resource usage time
per resource per process, of which a sample is shown in figure 6.4.

3Note that the samples shown here are completely fictional and do not adhere to any algorithm

or protocol at all, they are intended to show the possibilities of the tools.
4Common usage of diag2num and dat2avg is something like this:

diag2num -d <input.diag> | dat2avg

6.1. Tools used for debugging and testing 26

Total number of tasks: 3

Task 1 "First task"

Action: release at 0

Action: start of execution at 0

Action: claim resource 1 at 10

Action: end of execution at 100

Action: start of execution at 160

Action: free resource 1 at 190

Action: end of execution at 220

Action: deadline at 250

Highest action time of this task: 250

Total execution time of this task: 160

Total number of active periods of this task: 1

Total number of periods of this task: 1

Average execution time per period of this task: 160.00

Task 2 "Second task"

Action: release at 0

Action: start of execution at 220

Action: claim resource 2 at 250

Action: redefinition of deadline to 350 at 300

Action: free resource 2 at 350

Action: end of execution at 350

Action: deadline at 500

Highest action time of this task: 500

Total execution time of this task: 130

Total number of active periods of this task: 1

Total number of periods of this task: 1

Average execution time per period of this task: 130.00

Task 3 "Third task"

Action: release at 100

Action: start of execution at 100

Action: claim resource 2 at 100

Action: free resource 2 at 140

Action: end of execution at 160

Action: deadline at 200

Action: release at 300

Action: start of execution at 350

Action: claim resource 2 at 350

Action: free resource 2 at 390

Action: end of execution at 395

Action: deadline at 400

Highest action time of this task: 400

Total execution time of this task: 105

Total number of active periods of this task: 2

Total number of periods of this task: 2

Average execution time per period of this task: 52.50

Resource 1 "First resource"

Resource 2 "Second resource"

Highest action time of any task: 500

Grand total execution time of all tasks: 395

Figure 6.1: Sample output of diag2txt

6.1. Tools used for debugging and testing 27

Symbol Meaning
Coloured area Process execution

Striked through area Resource allocated

→ Process release

← Process deadline

� Process inherited deadline5

5A process inherited deadline means that a process inherits a priority, which is expressed as an

absolute deadline.

Figure 6.2: Sample output of diag2gif

Figure 6.3: Screen-shot of diagview

3 tasks total

task 1

avg. exec time 160.00

avg. time between release and exec 0.00

resource 1

avg. usage time 180.00

task 2

avg. exec time 130.00

avg. time between release and exec 220.00

resource 2

avg. usage time 100.00

task 3

avg. exec time 52.50

avg. time between release and exec 25.00

resource 2

avg. usage time 40.00

Figure 6.4: Sample output of dat2avg

6.2. Test setup 28

6.2 Test setup

The test setup consisted of two very different systems. The first system, which was
used for debugging, is a 80486 class machine, running at 66 MHz, and is equipped
with 16 MB of memory. The second system, which was used for development, is
a PentiumPro class machine, running at 180 MHz, and is equipped with 32 MB of
memory.

To test the scheduler and resource allocator a test scheme was implemented,
which can be found in figure 6.5. All combinations of a scheduler release interval
length of 0, 2, 5, 10, and 20 with 2, 4, 6, or 10 processes and 1, 2, 3, or 4 resources
total were tested. Each process uses exactly one resource, which may be shared
with other processes. Therefore when testing with 2 processes, at most 2 resources
could be used. The combination of 2 processes and 3 or 4 resources does not occur.
When enough resources are available for all processes, no resource is shared among
processes, but each process uses its own resource. This occurs only when testing
with 2 processes and 2 resources or 4 processes and 4 resources.

Because SRP combined with transactions claims all resources simultaneously at
the beginning of each period and releases them all simultaneously when the work
for that period is done, and because the lowest floor DR of all resources used by
a transaction is taken as that transaction’s pre-emption deadline ∆i, it is believed
that testing with one resource per process is as good as testing with more than one
resource per process.

The periods, relative deadlines, and programmed resource usage times used for
the test processes can be found in two tables. Table 6.1 uses the unit µs for all
numbers, table 6.2 uses the unit clock ticks6. When testing with n tasks, where
n < 10, only the first n task parameters are used. The programmed resource usage
is depicted as an algorithm in figure 6.6.

Because the tests were meant to measure the scheduling overhead and the influ-
ence of the scheduler release interval length the programmed resource usage times
have been kept relatively small. The periods have been kept regular, because this
ensures that many processes will be released at once in certain time intervals, which
means the scheduler has to do more work and is thus tested under more load than
when irregular periods would have been used. The deadlines have been chosen gen-
tly, to reduce the chance of an unfeasible task set.

Measurements have been taken by letting the scheduler and resource functions
write timing information to the sched-fifo and resource-fifo. It has been measured
that writing to a real-time FIFO takes approximately 10–20 clock ticks on the i486
and approximately 5 clock ticks on the i686 — the i686 is a lot more regular than
the i486.

The following section contains the results generated by running the test scheme
nine times on each computer system, and discusses those test results.

6Note: 1.19318 clock ticks equals 1 µs, so 1 clock tick equals approximately 0.8381 µs.

6.2. Test setup 29

Walk through several scheduler release interval lengths

for s in {0, 2, 5, 10, 20}
do

Walk through several numbers of processes

for p in {2, 4, 6, 10}
do

Walk through several numbers of resources

for r in
{
1 . . . min{p, 4}}

do
set scheduler release interval length to s

in parallel do
run p tasks using r resources total
collect data

Figure 6.5: Scheduler and resource allocator test scheme

Resource id’s run from 0 to number of resources minus 1

let r = 0
P stands for the number of processes

for t in {1 . . . P}
do

task t uses resource r

R stands for the number of resources

let r = (r + 1) mod R

Figure 6.6: Resource usage of test tasks

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10

Period 1000 1000 2000 2000 3000 3000 4000 4000 5000 5000
Relative

deadline
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Programmed

resource

usage time
1 1 1 1 2 2 2 2 3 3

Table 6.1: Test tasks’ parameters in µs

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10

Period 1193 1193 2386 2386 3579 3579 4772 4772 5965 5965
Relative

deadline
596 1193 1789 2386 2982 3579 4176 4772 5369 5965

Programmed

resource

usage time
1 1 1 1 2 2 2 2 3 3

Table 6.2: Test tasks’ parameters in clock ticks

6.3. Test results 30

Number of tasks
2 4 6 10

SRIL Table Page Table Page Table Page Table Page
0 D.1 40 D.6 41 D.11 42 D.16 43
2 D.2 40 D.7 41 D.12 42 D.17 43
5 D.3 40 D.8 41 D.13 42 D.18 44

10 D.4 40 D.9 41 D.14 42 D.19 44
20 D.5 40 D.10 41 D.15 43 D.20 44

Table 6.3: Test results reference table

6.3 Test results

The test results come from nine test runs. For each run the average execution time
(AET), the average time between release and execution (ATRE), and the average
resource usage time (ARU) have been determined for each task. This was done by
counting for each task the execution time per period, the time between release and
actual execution for each period, and the resource usage time per period. Averaging
these numbers for each task produced the AET, ATRE, and ARU per task.

Those average results of nine test runs are combined so the AET, ATRE, and
ARU of each task can be calculated over nine runs. Then for each task the average
scheduling overhead (ASO) has been determined by subtracting the ARU from the
AET.

The test results are presented in a set of tables. Because there are twenty tables
with results, these are placed in appendix D. Table 6.3 contains an overview of
which table can be found where. The unit of the numbers in the tables is clock
ticks. The rows with i486 in front of them are the results of the tests with the 80486
class machine, the rows with i686 in front of them are the results of the tests with
the PentiumPro class machine.

Because the mean values of test runs don’t say much by themselves, the sample
standard deviations of all test results have also been computed, these can be found in
appendix E. The sample standard deviations of the ASO have not been determined,
as the ASO is the result of an operation on the ARU and the AET.

Pre-emptionAssuming all values are subject to the Normal distribution the sample standard
deviations have been examined. And on a few occasions these are relatively high,
given the assumption of the Normal distribution. One of them was investigated to
see where that could be coming from. The test with 10 tasks, 4 resources and a
SRIL of 0 clock ticks was selected, where the ARU of tasks 7, 8, and 10 is showing
an abnormally large sample standard deviation. The average resource usage times
are respectively 53, 48, and 77, with sample standard deviations of 20.80, 17.85, and
31.08 respectively. So the measurements of all nine runs for these tasks have been
taken apart, and they are shown in table 6.4.

It is evident something happened. Because debugging info is written into a
real-time FIFO twice during the time counted as resource usage, and writing to

6.3. Test results 31

Test # 1 2 3 4 5 6 7 8 9
Task 7 37.8 82.2 80.0 38.9 38.9 43.3 81.1 38.9 40.0
Task 8 38.9 78.9 36.7 40.0 40.0 40.0 40.0 80.0 37.8

Task 10 40.0 74.3 40.0 72.9 111.4 104.3 40.0 108.6 102.9

Table 6.4: Individual test results of the ARU in clock ticks of tasks 7, 8, and 10,
using 10 tasks, 4 resources and a SRIL of 0, run on the i486

Figure 6.7: Screen-shot of a part of test run 2

a real-time FIFO takes approximately 10–20 clock ticks on the i486, the expected
resource usage lies somewhere between 20 and 45 clock ticks for tasks 7, 8, and 10.
Several of the numbers from table 6.4 are a lot above the numbers just mentioned.

Let’s take a closer look at test run 2, because here all values are above expec-
tations. Figure 6.7 shows a part of test run 2, in units of 10 clock ticks. Task 10
has been pre-empted by task 1, as can clearly be seen. And the tools used simply
count the total resource usage time, whether the process is actually running or not.
After examining a few others of these cases it showed all these high sample standard
deviations were caused by pre-emption and tools not counting correctly. Therefore
it was concluded all uncommonly high sample standard deviations are the result of
pre-emption, and, therefore, nothing to worry about.

On a few occasions the ARU of the lower priority tasks7 is much higher than
the rest. This is also caused by faulty measurements due to pre-emption. These
tasks happened to be pre-empted more often than others and therefore show higher
average resource usage times.

7The fact that the ARU of task 1 is much higher is dealt with later in this report.

6.4. Interpretation of test results 32

6.4 Interpretation of test results

The scheduler
release
interval length

What can be said about all these numbers? First it may be noticed that setting the
scheduler release interval length has virtually no effect. The SRIL can only affect
the average time between release and execution, but the ATRE does not change
significantly when the SRIL changes. So the idea about using the SRIL in order to
compensate for scheduling overhead doesn’t work at all. Therefore it is advised to
keep the scheduler release interval length on 0 clock ticks, because then the system
simply uses a release time.

The average
scheduling
overhead

The second number of interest was the average scheduling overhead. The test results
show that the ASO increases slightly with the number of tasks. The base ASO is
approximately 90 clock ticks for the i486 and approximately 42 clock ticks for the
i686. Adding real-time tasks adds about 3 clock ticks per task for the i486 and about
1 clock tick per task for the i686 to the base ASO.

The ASO consists of two real-time FIFO writes, the EDF scheduling and SRP
algorithm, and the actual task switch. Subtracting the time for the real-time FIFO
writes gives approximately 50–70 clock ticks of ASO for the i486 and approximately
32 clock ticks of ASO for the i686. Due to time constraints — these tests were run
in the final phase of this assignment — it was not possible to determine the time
needed for an actual task switch. But as performing a task switch between two real-
time tasks consists only of saving and restoring some CPU registers and changing
the stack, it is believed that a real-time task switch doesn’t cost much. The rest of
the time is spent performing the EDF and SRP algorithms.

The average
time between
release and
execution

The average time between release and execution increases as the priority of a process
decreases. This is to be expected: higher priority processes get to the CPU sooner
than lower priority processes, so their ATRE should be lower. Thus the ATRE shows
no surprises.

Other
interesting
results

The test results showed a few peculiarities. The scheduling of the first invocation
takes much longer than all other invocation scheduling times. It is believed this is
due to caching, but further research is needed to be conclusive about this.

Another peculiarity is the fact that the highest priority task, task 1, always seems
to have a higher average resource usage time than the other tasks, while they are
expected to have about the same ARU. It is not clear what is the cause of this. A
possible cause may be the fact that the current test setup always defines task 1 first,
and the current implementation always places tasks defined earlier later in the list
of active tasks. As this list is searched from head to tail, task 1 is always seen last
during the scanning of this list by the scheduler. But then it would be expected that
the average resource usage time is inversely proportional to the process priority, and
the other tasks do not show this behaviour.

In order to perform more accurate measurements or to measure the capabilities
of the system in a just-feasible situation, where using real-time FIFOs to produce
scheduling timing information makes the system unfeasible, other types of measure-

6.4. Interpretation of test results 33

ment are needed. In this context it is needed to measure using external hardware —
an oscilloscope, logic analyzer or another computer — in order to get better results.

The tests were tried with 20 tasks, but those failed miserably on the i486, as
it just didn’t have enough processing power to handle that many tasks with such
small periods. The i686 could handle that many tasks, but these weren’t included
because there would be no reference material with the i486. Of course the periods
could have been enlarged, but it was decided — also due to time constraints — that
there were enough test results.

ExpectationsIt is expected that adding more tasks increases the average scheduling overhead in
a linear fashion, with a relatively high base ASO and a low increase per task. It
is far more difficult to give an estimate of the influence on the ASO when adding
resources to the system. Because this depends heavily on the priority of the processes
using that new resource. It is believed the influence on the ASO is minimal, but
the influence on the feasibility of the system can be enormous, depending on the
priorities of the processes using the added resource.

34

Chapter 7

Conclusions

The first conclusion is that an open source non-real-time system is a very good basis
to build a real-time system on. Linux already has two different real-time extensions
that can be worked with. Real-Time Linux was chosen as a basis to enhance with
EDF and SRP, because it already contained a dynamic scheduler and appeared
to have less complex code than KU Real-Time Linux, making it easier to enhance
RT-Linux.

It is not too hard to modify RT-Linux, because it has a clear structure. Using a
different scheduler is easy, because the scheduler is a single kernel module. It cannot
be changed while there are a number of real-time tasks running. But the machine
doesn’t have to be rebooted to change the real-time scheduler, which is possible
when no real-time tasks but the Linux kernel task are running. It therefore is very
easy to experiment with different schedulers.

Extending RT-Linux with the Stack Resource protocol is also not very hard.
The SRP does not require much extra work, especially SRP in combination with
transactions. As SRP guarantees mutual exclusion already — it is only necessary
to specify which transaction uses which resource — it is not needed to explicitly use
a mutual exclusion semaphore to claim a resource.

Test results show that the current implementation uses quite a lot of scheduling
overhead, which consists of a relatively high base scheduling overhead, and only a
small addition for each transaction in the system. The current implementation is not
optimal, as a single list is used containing all transactions currently in the system,
and the scheduler scans this list for suitable transactions several times. Multiple
process lists or queues may diminish this overhead. It is believed, but not certain,
that optimization should be able to at least halve the scheduling overhead.

The test results also show that the scheduler release interval length has no in-
fluence, and can therefore easily be omitted. The average time between release
and execution behaves as expected, it is inversely proportional to the priority of a
transaction, or, as one may also put it, proportional to the relative deadline of a
transaction.

Test results also showed a peculiarity in the very first invocation of every test
run: scheduling takes considerably longer the first time. This is believed to be due to
caching mechanisms. They also showed that the highest priority transaction always
has a higher average resource usage time than the others, the cause to this is sus-
pected to be due to the ordering of the transactions in the list of active transactions,
but this is not sure.

It is expected that adding transactions is of linear influence on the average
scheduling overhead, and that adding resources is of no influence on the ASO. Adding

7. Conclusions 35

resources, however, is expected to be of great influence on the schedulability of the
system.

The tools developed are very useful to see what actually is going on underneath.
These tools can also easily be used to debug and test other real-time operating
systems, they are not bound to RT-Linux. All that is needed is a program to convert
the scheduling events to a schedule events listing, which is described in appendix C.

The results are believed to be suitable for allowing students to experiment with
real-time systems, and they could very well be usable for a real-world problem,
provided the implementation is optimized in order to gain more performance.

36

Chapter 8

Recommendations for further research

Further research is needed to improve performance. Measurements could be made
how the system performs without using real-time FIFOs. Another measuring system,
perhaps using an oscilloscope, logic analyzer, or another computer even, connected
to the test computer, possibly with some debugging code to send signals to the
ports the other, external, device is listening on, could be a solution. Because pre-
emption appeared to disrupt the method of measurement used, It is suggested a
better measuring method is looked into anyway, be it if that method uses real-time
FIFOs or not.

Transactions using multiple resources were not tested. Such tests could be carried
out to see how scheduling overhead is affected by tasks using multiple resources.
Tests using a mix of tasks using either no, one or several resources could be run as
well.

Also it could be tested how the system operates under an overload situation, i.e.
the system is presented with more transactions than it can handle. Furthermore
several refinements can be introduced to the system, like allowing a transaction
to release certain resources before its finish for the period, or implementing the
classical SRP protocol, without transactions. The effect of those refinements can
then be measured, so it is possible to build an overview of different resource allocation
policies and their performance.

It is also suggested to do more investigations to the overhead of performing a
schedulability analysis, such as the one presented in [Laan97]. The current imple-
mentation provides no support to detect a non-schedulable task set being presented
to it. The only problem with a schedulability analysis that can be seen already, is
that it is difficult to establish the worst-case run-time Ci of a given task. This de-
pends upon the total number of real-time tasks, which means an accurate estimate
is needed of the average scheduling overhead associated with a set of transactions.
At least a more accurate estimate than the one mentioned in this report.

Finally it is suggested that the cause of the peculiarities in the test results — first
invocation takes longer and highest priority or first defined task uses more resource
time — is determined, and possibly, eliminated.

37

Appendix A

Abbreviations

This appendix lists all abbreviations used in this report and what they stand for.

Abbreviation Meaning
AET Average Execution Time
ARU Average Resource Usage time
ASO Average Scheduling Overhead
ATRE Average Time between Release and Execution
CPU Central Processing Unit
EDF Earliest Deadline First
FIFO First-In First-Out
GIF Graphics Interchange Format
Kurt KU Real-Time Linux
PNG Portable Network Graphics
RR Round-Robin
RT-Linux Real-Time Linux
SRIL Scheduler Release Interval Length
SRP Stack Resource protocol
XPM X PixMap

38

Appendix B

Bibliography

[Bake91] T.P. Baker, Stackbased Scheduling of real-time processes, The journal
of real-time systems, Vol. 2, pp. 67-99, 1991

[Bara97a] M. Barabanov and V. Yodaiken, Introducing Real-Time Linux, Linux
Journal 34, pp. 19–23, 1997

[Bara97b] M. Barabanov, A Linux-based Real-Time Operating System, Master’s
thesis, New Mexico Institute of Mining and Technology, 1997

[Bara98] M. Barabanov et al., Real-Time Linux, http://rtlinux.cs.nmt.

edu/~rtlinux/, 1998
[IEEE96] Portable Operating System Interface (POSIX), [IEEE/ANSI Std.

1003.1, 1996 Edition], The Institute of Electrical and Electronics En-
gineers, New York, 1996

[Jans98] P.G. Jansen, H. Scholten, and R. Laan, Flexible Scheduling in Multi-
media Kernels: an Overview, to be published in Proceedings of Inter-
national Conference on Multimedia & Telecommunications manage-
ment, 1998

[Laan97] R. Laan, Schedulability tests for EDF and DM with Blocking, Master’s
thesis, University of Twente, 1997

[Liu73] C.L. Liu and J.W. Layland, Scheduling Algorithms for Multiprogram-
ming in a Hard Real-Time Environment, Journal of the ACM, 20, 1,
pp. 40–61, 1973

[Ripo97a] I. Ripoll, Crono, http://bernia.disca.upv.es/~iripoll/

rt-linux/graphic/crono/, 1997
[Ripo97b] I. Ripoll, EDF scheduler for RT-Linux, http://bernia.disca.upv.

es/~iripoll/rt-linux/graphic/, 1997
[Srin98] B. Srinivasan et al., KURT: The KU Real-Time Linux, http://hegel.

ittc.ukans.edu/projects/kurt/, 1998
[Yoda95] V. Yodaiken and M. Barabanov, A Real-Time Linux, Technical report,

New Mexico Institute of Technology, 1995

39

Appendix C

Scheduler events listing grammar

skip
{tab, lf, space}

comment
until lf

keywords
:BODY = BODY t
ACTI = ACTI t
DEADLINE = DEADLINE t
END = END t
EXEC = EXEC t
REDEF = REDEF t
RESOURCE = RESOURCE t
RSCL = RSCL t
RSFR = RSFR t
TASK = TASK t

grammar
start : Chronogram

Chronogram : Header BODY t Body

Header : Header Header line

| ε

Header line : TASK t Decnum Decnum

| RESOURCE t Decnum Decnum

Body : Body Body line

| ε

Body line : ACTI t Decnum Decnum Decnum

| END t Decnum Decnum

| EXEC t Decnum Decnum Decnum

| RSCL t Decnum Decnum Decnum

| RSFR t Decnum Decnum Decnum

| REDEF t DEADLINE t Decnum Decnum Decnum

Decnum : Decnum1 Digit

Decnum1 : Decnum1 Digit

| ε

Digit : 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

40

Appendix D

Test results

The unit of the numbers in the tables is clock ticks, 1.19318 clock ticks equals 1 µs,
so 1 clock tick equals approximately 0.8381 µs.

CPU & 1 resource 2 resources

task # AET ATRE ARU ASO AET ATRE ARU ASO

i486 1 148 22 35 113 158 22 39 119

2 114 175 25 89 122 185 28 93

i686 1 57 14 13 44 58 14 14 44

2 54 73 13 42 56 74 13 44

Table D.1: Results with a SRIL of 0 clock ticks and 2 real-time tasks

CPU & 1 resource 2 resources

task # AET ATRE ARU ASO AET ATRE ARU ASO

i486 1 147 21 35 112 159 22 41 118

2 116 174 26 90 121 186 28 93

i686 1 57 14 13 44 58 14 14 44

2 55 73 13 42 56 74 13 44

Table D.2: Results with a SRIL of 2 clock ticks and 2 real-time tasks

CPU & 1 resource 2 resources

task # AET ATRE ARU ASO AET ATRE ARU ASO

i486 1 150 21 35 116 156 21 39 117

2 116 177 26 90 121 182 29 93

i686 1 57 14 13 44 58 14 13 45

2 55 73 12 43 56 74 13 43

Table D.3: Results with a SRIL of 5 clock ticks and 2 real-time tasks

CPU & 1 resource 2 resources

task # AET ATRE ARU ASO AET ATRE ARU ASO

i486 1 147 22 35 112 157 21 38 119

2 113 174 26 87 122 184 29 93

i686 1 57 14 13 44 59 14 14 45

2 55 73 12 43 56 75 13 44

Table D.4: Results with a SRIL of 10 clock ticks and 2 real-time tasks

CPU & 1 resource 2 resources

task # AET ATRE ARU ASO AET ATRE ARU ASO

i486 1 149 22 37 113 153 21 38 115

2 115 176 26 89 122 180 29 93

i686 1 57 14 12 45 59 14 14 45

2 54 73 12 42 57 75 12 44

Table D.5: Results with a SRIL of 20 clock ticks and 2 real-time tasks

D. Test results 41

CPU & 1 resource 2 resources 3 resources 4 resources

task # AET ATRE ARU ASO AET ATRE ARU ASO AET ATRE ARU ASO AET ATRE ARU ASO

i486 1 152 22 35 117 158 21 39 119 161 21 41 120 167 21 44 123

2 119 179 26 93 126 185 28 98 132 187 32 100 140 194 35 105

3 110 298 25 85 118 312 28 89 123 322 31 91 135 335 36 98

4 115 434 25 90 124 456 28 95 129 472 31 98 140 499 35 105

i686 1 58 14 13 45 60 14 14 45 61 14 15 46 63 14 15 48

2 56 74 12 44 57 76 12 45 59 78 13 45 60 79 14 46

3 54 127 12 42 54 131 13 40 57 133 14 43 58 135 14 44

4 57 192 13 44 59 196 12 47 60 202 13 47 62 205 14 48

Table D.6: Results with a SRIL of 0 clock ticks and 4 real-time tasks

CPU & 1 resource 2 resources 3 resources 4 resources

task # AET ATRE ARU ASO AET ATRE ARU ASO AET ATRE ARU ASO AET ATRE ARU ASO

i486 1 147 21 34 113 155 22 37 118 160 21 41 119 165 21 43 122

2 118 174 25 93 124 182 28 96 132 187 32 100 138 191 35 103

3 110 293 25 84 116 308 28 88 123 323 31 92 132 330 35 97

4 116 427 25 91 123 450 28 95 129 474 31 99 140 491 35 105

i686 1 59 14 13 46 60 14 14 46 62 14 14 47 64 14 15 49

2 56 75 13 43 57 76 13 45 59 78 13 45 60 80 15 45

3 55 128 12 43 54 130 13 42 58 133 14 43 57 137 14 43

4 58 194 12 46 58 196 13 45 60 202 13 47 62 206 13 48

Table D.7: Results with a SRIL of 2 clock ticks and 4 real-time tasks

CPU & 1 resource 2 resources 3 resources 4 resources

task # AET ATRE ARU ASO AET ATRE ARU ASO AET ATRE ARU ASO AET ATRE ARU ASO

i486 1 153 21 35 118 160 21 40 120 162 21 40 122 166 21 44 123

2 120 180 27 93 127 187 29 97 132 189 32 100 138 193 35 103

3 110 301 25 85 117 317 29 89 123 324 32 91 131 331 36 95

4 117 437 25 92 123 461 27 96 129 474 31 98 139 491 35 104

i686 1 58 14 14 44 60 14 13 47 62 14 15 47 63 14 15 48

2 56 74 12 44 57 77 13 44 58 78 14 44 60 80 14 46

3 54 127 13 41 54 131 12 42 57 133 14 43 58 136 15 43

4 58 191 13 45 58 197 12 45 61 201 13 48 62 206 14 48

Table D.8: Results with a SRIL of 5 clock ticks and 4 real-time tasks

CPU & 1 resource 2 resources 3 resources 4 resources

task # AET ATRE ARU ASO AET ATRE ARU ASO AET ATRE ARU ASO AET ATRE ARU ASO

i486 1 151 21 35 116 154 21 37 117 163 21 42 121 168 21 43 125

2 118 177 25 92 123 181 29 95 133 189 32 101 138 194 35 103

3 110 296 25 85 115 305 28 87 123 324 31 92 132 334 35 97

4 116 431 26 91 124 446 28 97 129 475 31 98 139 495 36 103

i686 1 57 14 13 44 61 14 14 47 63 14 15 48 63 14 15 48

2 56 74 12 44 57 77 13 44 59 79 13 46 59 80 14 45

3 53 126 12 41 55 131 12 43 57 134 15 42 57 136 14 43

4 58 190 13 46 58 198 12 46 61 203 13 47 62 205 14 49

Table D.9: Results with a SRIL of 10 clock ticks and 4 real-time tasks

CPU & 1 resource 2 resources 3 resources 4 resources

task # AET ATRE ARU ASO AET ATRE ARU ASO AET ATRE ARU ASO AET ATRE ARU ASO

i486 1 152 21 35 117 156 21 37 119 161 21 41 120 171 21 47 124

2 118 178 26 92 125 182 28 97 132 188 32 100 138 198 35 103

3 109 297 26 83 117 306 28 88 124 323 31 93 132 337 36 96

4 116 431 24 91 124 450 28 96 130 475 32 98 139 499 35 103

i686 1 58 14 13 45 59 14 14 45 62 14 15 47 63 14 15 48

2 56 74 12 44 58 76 13 46 59 79 14 45 60 80 14 46

3 54 128 13 41 55 131 12 42 57 135 14 43 57 136 14 44

4 57 193 12 45 59 197 12 46 60 204 13 47 62 206 14 48

Table D.10: Results with a SRIL of 20 clock ticks and 4 real-time tasks

D. Test results 42

CPU & 1 resource 2 resources 3 resources 4 resources

task # AET ATRE ARU ASO AET ATRE ARU ASO AET ATRE ARU ASO AET ATRE ARU ASO

i486 1 150 21 36 115 156 21 37 119 161 21 40 121 168 20 43 125

2 121 177 26 95 129 182 29 100 135 187 32 102 143 195 35 108

3 112 299 25 87 120 314 28 91 126 323 31 94 134 339 35 99

4 118 437 24 93 127 461 28 99 131 476 31 100 142 503 35 107

5 123 450 26 98 132 476 30 102 140 494 34 106 147 520 36 111

6 123 574 27 96 134 608 29 104 137 634 33 104 149 667 36 114

i686 1 59 14 12 46 60 14 14 46 63 14 15 48 64 14 15 49

2 56 75 12 44 58 76 13 45 60 79 13 47 60 80 13 47

3 54 128 12 42 56 131 13 43 58 135 14 44 59 137 13 45

4 57 193 12 45 59 198 12 47 60 205 13 47 63 208 14 49

5 60 199 14 46 62 205 13 50 65 211 14 52 66 216 16 50

6 61 259 12 49 63 267 14 49 65 277 15 50 65 282 15 50

Table D.11: Results with a SRIL of 0 clock ticks and 6 real-time tasks

CPU & 1 resource 2 resources 3 resources 4 resources

task # AET ATRE ARU ASO AET ATRE ARU ASO AET ATRE ARU ASO AET ATRE ARU ASO

i486 1 149 21 33 115 158 20 38 119 160 20 40 120 165 20 43 122

2 121 175 26 95 129 183 29 101 134 185 31 102 141 191 34 107

3 113 299 26 87 120 315 29 91 126 322 31 95 133 334 35 99

4 119 437 25 94 127 462 28 99 131 477 31 100 141 496 35 106

5 124 454 26 98 133 476 30 103 140 492 33 106 147 514 36 111

6 122 578 26 96 133 609 30 103 139 631 34 105 147 661 37 111

i686 1 59 14 13 46 59 14 13 46 62 14 15 47 64 14 15 49

2 56 75 12 44 58 76 13 45 60 79 13 46 61 80 13 48

3 54 128 12 42 55 130 12 43 58 135 14 44 59 137 13 46

4 58 194 12 46 59 197 12 47 61 205 13 47 63 208 14 49

5 60 200 13 47 62 204 14 48 65 212 15 51 66 216 15 51

6 60 261 13 47 62 266 15 47 65 277 15 50 65 282 14 51

Table D.12: Results with a SRIL of 2 clock ticks and 6 real-time tasks

CPU & 1 resource 2 resources 3 resources 4 resources

task # AET ATRE ARU ASO AET ATRE ARU ASO AET ATRE ARU ASO AET ATRE ARU ASO

i486 1 153 20 35 118 157 21 36 120 161 21 42 119 169 21 44 125

2 122 179 26 95 129 183 29 100 134 187 32 102 141 196 35 106

3 113 303 25 88 120 313 28 91 126 323 32 94 134 340 35 99

4 119 442 25 93 126 460 28 98 131 477 31 100 142 503 35 106

5 124 455 26 97 131 477 29 102 139 495 33 106 147 518 36 111

6 123 579 26 97 133 608 30 103 138 634 33 104 147 664 36 111

i686 1 59 14 13 46 60 14 13 46 63 14 14 49 64 14 15 49

2 56 75 12 44 58 76 13 44 60 79 13 47 61 80 14 47

3 54 128 12 42 55 130 13 42 58 136 13 45 58 136 13 45

4 58 193 12 46 60 196 12 48 61 206 13 48 63 207 14 49

5 61 200 13 47 62 204 14 48 65 211 14 51 67 216 15 51

6 60 261 14 46 61 266 15 47 65 276 14 50 65 283 14 51

Table D.13: Results with a SRIL of 5 clock ticks and 6 real-time tasks

CPU & 1 resource 2 resources 3 resources 4 resources

task # AET ATRE ARU ASO AET ATRE ARU ASO AET ATRE ARU ASO AET ATRE ARU ASO

i486 1 152 21 35 117 158 21 38 121 163 21 41 122 167 20 44 124

2 123 178 26 97 129 184 29 101 135 190 32 103 142 193 36 106

3 112 303 24 88 119 317 28 91 126 326 31 94 135 337 36 99

4 118 441 25 93 128 463 28 100 132 481 31 101 141 502 36 106

5 124 458 26 98 132 479 30 102 140 500 33 107 146 520 36 109

6 122 582 26 96 133 610 30 104 138 640 33 105 146 666 36 109

i686 1 59 14 13 46 60 14 13 47 63 14 14 49 63 14 15 48

2 55 75 12 44 58 77 13 45 60 80 13 46 61 80 13 48

3 55 127 12 43 56 131 12 44 59 136 14 45 59 137 13 46

4 58 193 12 46 60 198 12 47 60 207 14 46 63 208 14 49

5 60 199 13 47 62 206 14 49 65 213 15 50 66 216 15 51

6 61 259 13 47 62 268 15 48 64 277 15 50 65 282 15 50

Table D.14: Results with a SRIL of 10 clock ticks and 6 real-time tasks

D. Test results 43

CPU & 1 resource 2 resources 3 resources 4 resources

task # AET ATRE ARU ASO AET ATRE ARU ASO AET ATRE ARU ASO AET ATRE ARU ASO

i486 1 151 21 35 117 158 21 37 121 163 20 40 123 167 20 44 124

2 120 177 26 94 129 184 28 100 136 189 32 104 142 193 35 107

3 113 299 24 89 118 317 28 90 126 327 31 95 134 340 35 100

4 118 438 25 94 126 463 28 98 132 481 31 101 141 504 35 106

5 123 452 26 96 131 476 30 101 140 498 32 107 148 516 37 111

6 123 575 27 96 133 607 29 104 138 633 33 105 146 664 36 110

i686 1 59 14 13 46 60 14 13 47 63 14 15 48 64 14 15 48

2 56 75 12 44 57 76 13 45 59 79 13 46 61 80 14 47

3 54 128 12 42 55 130 12 43 58 135 14 44 59 137 14 45

4 58 193 12 46 60 197 13 47 60 206 13 47 64 208 14 50

5 60 200 13 46 62 204 13 48 65 212 15 49 67 217 16 51

6 61 260 13 48 62 266 14 48 64 277 15 49 65 284 16 50

Table D.15: Results with a SRIL of 20 clock ticks and 6 real-time tasks

CPU & 1 resource 2 resources 3 resources 4 resources

task # AET ATRE ARU ASO AET ATRE ARU ASO AET ATRE ARU ASO AET ATRE ARU ASO

i486 1 153 22 33 120 156 21 36 120 164 23 40 125 172 22 43 129

2 130 180 27 103 139 183 31 108 149 194 35 114 153 207 38 115

3 124 318 27 97 131 328 31 100 141 348 33 107 146 360 37 109

4 132 470 27 105 140 488 30 110 146 519 33 112 155 538 37 118

5 136 478 27 109 143 501 32 111 156 528 35 120 161 559 39 122

6 135 614 28 107 146 644 32 114 154 683 36 118 162 721 39 123

7 141 742 28 113 150 782 32 118 157 823 34 123 176 864 53 122

8 138 883 28 110 150 960 32 119 164 1015 38 126 185 1076 48 137

9 152 789 29 123 156 841 32 124 167 887 36 131 174 946 39 135

10 151 941 29 122 158 998 33 125 168 1054 36 131 204 1120 77 127

i686 1 60 14 13 46 61 14 14 47 64 14 15 49 66 14 15 50

2 57 76 12 45 59 77 13 47 60 80 13 47 62 82 14 48

3 55 130 12 43 57 133 12 44 59 137 14 45 59 141 14 44

4 58 197 12 46 59 202 13 46 61 209 14 47 64 212 14 50

5 61 202 14 47 62 208 15 47 65 215 15 51 67 220 15 52

6 61 263 13 47 63 270 13 49 65 280 15 51 66 286 15 51

7 64 312 13 51 66 320 13 53 67 332 15 52 68 340 15 53

8 63 376 14 49 65 386 13 52 67 399 14 52 70 408 16 54

9 67 319 14 53 69 327 15 55 72 338 16 56 72 346 16 56

10 68 387 14 55 69 397 16 53 71 411 16 55 72 419 16 56

Table D.16: Results with a SRIL of 0 clock ticks and 10 real-time tasks

CPU & 1 resource 2 resources 3 resources 4 resources

task # AET ATRE ARU ASO AET ATRE ARU ASO AET ATRE ARU ASO AET ATRE ARU ASO

i486 1 151 22 34 117 157 21 37 120 170 23 39 131 174 22 43 130

2 132 179 27 105 140 185 31 108 149 202 34 115 154 207 38 116

3 122 315 27 95 130 327 31 100 142 356 35 107 148 361 37 110

4 131 465 26 105 139 486 31 109 147 529 34 114 155 540 38 117

5 136 477 27 108 144 500 32 112 156 536 35 122 162 563 38 123

6 135 613 28 108 145 644 32 113 154 693 36 118 162 725 39 123

7 142 740 29 113 149 778 32 117 160 838 35 125 180 867 49 131

8 140 882 28 112 154 941 32 122 167 1033 47 119 185 1084 54 131

9 147 794 29 118 156 840 33 124 169 900 37 132 173 948 39 134

10 149 941 29 120 161 996 35 126 167 1069 37 131 201 1122 57 145

i686 1 59 14 13 46 62 14 14 48 64 14 15 49 65 14 15 50

2 57 76 12 45 59 78 13 46 61 80 13 48 61 82 14 48

3 56 129 12 44 56 134 12 43 59 138 14 45 59 139 14 45

4 58 197 12 46 60 201 13 47 61 209 14 47 64 211 14 50

5 61 203 14 47 63 208 13 50 65 215 16 50 67 219 16 51

6 61 263 14 47 63 271 14 50 65 281 15 50 66 286 15 51

7 63 312 13 51 65 322 13 53 68 333 15 53 67 339 15 52

8 63 375 13 51 65 388 13 51 67 401 15 51 69 406 15 54

9 66 321 15 51 69 327 16 53 72 339 17 55 74 345 16 58

10 66 387 16 50 69 396 16 54 70 411 16 54 71 419 15 56

Table D.17: Results with a SRIL of 2 clock ticks and 10 real-time tasks

D. Test results 44

CPU & 1 resource 2 resources 3 resources 4 resources

task # AET ATRE ARU ASO AET ATRE ARU ASO AET ATRE ARU ASO AET ATRE ARU ASO

i486 1 153 22 34 119 158 21 37 121 162 22 39 123 174 22 44 130

2 132 180 27 105 139 185 31 108 146 190 34 112 154 208 38 116

3 125 317 26 99 132 331 31 101 139 339 34 105 147 360 38 109

4 131 470 26 105 140 492 31 109 145 508 33 112 155 539 38 117

5 136 480 28 108 143 501 31 112 153 521 35 118 158 564 39 120

6 135 616 27 108 145 645 32 113 152 674 36 116 158 712 40 118

7 140 746 27 113 149 784 32 117 157 811 34 123 176 864 49 127

8 140 890 27 112 153 951 32 121 157 1002 36 121 183 1076 58 125

9 149 796 28 121 156 842 33 123 166 868 37 129 174 947 40 134

10 148 945 30 118 159 997 35 124 164 1033 36 128 202 1120 56 145

i686 1 60 14 13 47 62 14 14 48 63 14 15 48 65 14 15 50

2 58 76 12 45 59 78 12 47 60 80 14 47 62 81 14 47

3 55 131 12 43 56 134 12 44 59 137 13 46 59 139 13 46

4 58 198 12 45 61 202 13 48 62 208 13 50 64 211 14 51

5 62 203 12 50 63 209 14 49 64 215 16 49 67 220 16 51

6 60 265 14 46 63 272 14 49 65 280 16 49 66 287 16 50

7 63 314 14 48 65 322 13 52 67 333 14 52 68 341 15 53

8 64 377 12 51 65 388 14 51 67 400 14 53 69 409 15 55

9 66 318 15 51 69 329 16 53 71 338 16 55 74 346 17 57

10 67 385 15 53 68 397 17 51 71 409 16 55 72 420 17 55

Table D.18: Results with a SRIL of 5 clock ticks and 10 real-time tasks

CPU & 1 resource 2 resources 3 resources 4 resources

task # AET ATRE ARU ASO AET ATRE ARU ASO AET ATRE ARU ASO AET ATRE ARU ASO

i486 1 153 22 33 120 156 21 37 119 165 22 40 125 173 22 42 131

2 131 180 27 104 139 185 32 108 147 194 34 113 154 207 37 116

3 124 318 26 97 131 328 31 100 141 347 35 106 147 358 38 109

4 129 469 26 103 140 488 31 108 145 518 33 112 156 536 38 118

5 135 477 27 108 142 499 32 110 154 527 35 119 159 562 39 120

6 134 612 27 107 145 641 32 113 153 681 37 117 162 720 38 124

7 141 740 27 114 148 778 31 116 159 823 34 124 176 863 59 117

8 138 881 27 112 155 937 33 123 162 1016 36 126 184 1077 63 122

9 149 796 29 120 157 844 33 124 168 884 36 132 172 949 40 133

10 151 945 30 121 159 1001 34 125 167 1052 36 131 205 1122 48 156

i686 1 61 14 13 48 61 14 14 48 63 14 15 49 66 14 15 51

2 57 77 12 44 59 78 13 46 60 80 14 47 62 82 14 48

3 55 130 12 43 57 134 13 44 59 137 14 45 59 141 14 45

4 57 197 11 46 60 203 13 47 62 208 13 49 64 213 14 50

5 61 202 14 48 62 209 13 49 65 216 15 50 67 220 14 52

6 61 264 13 48 64 272 14 50 65 281 16 49 66 286 14 52

7 64 313 12 52 65 323 13 52 67 332 16 52 69 340 16 54

8 63 377 13 49 65 389 13 52 67 400 14 53 68 410 16 53

9 67 319 15 52 69 329 17 52 72 338 16 57 72 345 16 57

10 67 386 14 54 69 398 16 54 70 410 16 54 72 417 18 55

Table D.19: Results with a SRIL of 10 clock ticks and 10 real-time tasks

CPU & 1 resource 2 resources 3 resources 4 resources

task # AET ATRE ARU ASO AET ATRE ARU ASO AET ATRE ARU ASO AET ATRE ARU ASO

i486 1 150 21 33 117 157 20 36 121 167 21 41 127 170 22 43 127

2 131 177 27 104 139 182 31 108 149 195 34 115 153 203 38 115

3 124 313 26 97 132 330 31 101 141 352 35 107 146 355 38 108

4 131 464 26 105 140 491 30 109 146 524 34 112 154 532 37 117

5 136 475 27 109 146 501 32 114 155 530 35 120 159 556 39 120

6 135 611 28 108 145 646 32 113 156 685 36 120 161 715 39 122

7 140 737 27 113 149 784 31 118 159 830 34 124 175 854 58 117

8 141 877 27 113 148 966 31 117 164 1024 41 123 187 1066 71 116

9 149 791 29 120 158 839 33 125 169 884 37 132 173 942 39 134

10 148 940 29 119 159 997 33 126 166 1053 38 128 201 1115 49 152

i686 1 60 14 13 47 61 14 14 48 63 14 15 49 65 14 16 50

2 57 76 12 45 59 78 12 47 61 80 14 47 62 82 14 48

3 55 130 12 44 56 134 13 43 59 138 13 46 60 140 14 46

4 58 197 12 45 60 201 13 48 61 210 14 48 64 212 14 50

5 62 202 13 49 63 209 14 49 66 215 15 51 68 220 16 52

6 61 264 13 48 63 272 14 50 65 281 15 50 67 288 15 52

7 63 313 13 51 64 323 14 50 67 333 15 52 68 341 15 52

8 64 376 13 50 64 387 14 50 67 401 16 52 70 409 14 55

9 68 319 15 53 69 328 16 52 72 340 17 55 74 347 17 57

10 68 387 14 53 69 397 16 53 71 412 17 54 72 420 17 56

Table D.20: Results with a SRIL of 20 clock ticks and 10 real-time tasks

45

Appendix E

Test results with sample standard deviations

The following tables contain the test results without the ASO value, but with the
sample standard deviations for all test runs.

Sample standard deviations with (SRIL, # of RT tasks) = (0, 2)

1 resource 2 resources

CPU & AET ATRE ARU AET ATRE ARU

task # x σ x σ x σ x σ x σ x σ

i486 1 148 5.01 22 1.31 35 2.84 158 11.03 22 0.54 39 4.85

2 114 0.90 175 5.92 25 0.79 122 2.78 185 11.27 28 1.00

i686 1 57 1.20 14 0.28 13 0.70 58 2.02 14 0.49 14 1.14

2 54 0.72 73 1.26 13 0.88 56 0.83 74 2.39 13 1.03

Sample standard deviations with (SRIL, # of RT tasks) = (2, 2)

1 resource 2 resources

CPU & AET ATRE ARU AET ATRE ARU

task # x σ x σ x σ x σ x σ x σ

i486 1 147 6.52 21 0.88 35 2.29 159 7.33 22 0.71 41 2.73

2 116 4.71 174 7.34 26 1.53 121 1.65 186 7.69 28 0.57

i686 1 57 1.18 14 0.52 13 0.88 58 1.88 14 0.52 14 1.24

2 55 1.53 73 1.42 13 0.67 56 1.39 74 1.97 13 1.03

Sample standard deviations with (SRIL, # of RT tasks) = (5, 2)

1 resource 2 resources

CPU & AET ATRE ARU AET ATRE ARU

task # x σ x σ x σ x σ x σ x σ

i486 1 150 9.47 21 0.70 35 1.52 156 7.84 21 0.52 39 3.46

2 116 3.81 177 9.92 26 0.88 121 1.65 182 8.22 29 0.85

i686 1 57 1.48 14 0.44 13 0.55 58 0.65 14 0.45 13 0.71

2 55 0.95 73 1.60 12 0.71 56 0.81 74 1.05 13 0.40

Sample standard deviations with (SRIL, # of RT tasks) = (10, 2)

1 resource 2 resources

CPU & AET ATRE ARU AET ATRE ARU

task # x σ x σ x σ x σ x σ x σ

i486 1 147 5.47 22 1.03 35 2.11 157 7.49 21 0.89 38 1.99

2 113 0.41 174 6.03 26 0.92 122 2.26 184 8.46 29 0.52

i686 1 57 0.64 14 0.42 13 0.80 59 1.09 14 0.32 14 0.75

2 55 0.59 73 0.79 12 0.48 56 0.92 75 1.27 13 1.13

Sample standard deviations with (SRIL, # of RT tasks) = (20, 2)

1 resource 2 resources

CPU & AET ATRE ARU AET ATRE ARU

task # x σ x σ x σ x σ x σ x σ

i486 1 149 4.09 22 0.99 37 2.69 153 4.88 21 1.02 38 1.00

2 115 1.90 176 4.42 26 1.09 122 2.27 180 5.79 29 0.94

i686 1 57 0.95 14 0.25 12 0.76 59 2.00 14 0.33 14 1.28

2 54 0.50 73 1.04 12 0.95 57 0.60 75 1.96 12 0.43

E. Test results with sample standard deviations 46

S
a
m

p
le

st
a
n
d
a
rd

d
e
v
ia

ti
o
n
s

w
it
h

(S
R

IL
,
#

o
f
R
T

ta
sk

s)
=

(0
,
4
)

1
re

so
u
rc

e
2

re
so

u
rc

e
s

3
re

so
u
rc

e
s

4
re

so
u
rc

e
s

C
P
U

&
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U

ta
sk

#
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ

i4
8
6

1
1
5
2

8
.6

3
2
2

0
.9

1
3
5

3
.3

8
1
5
8

5
.2

3
2
1

1
.1

0
3
9

2
.0

7
1
6
1

5
.6

4
2
1

0
.8

5
4
1

1
.1

6
1
6
7

5
.6

2
2
1

1
.1

5
4
4

1
.2

0

2
1
1
9

3
.2

9
1
7
9

8
.7

5
2
6

0
.7

5
1
2
6

3
.2

8
1
8
5

5
.9

4
2
8

0
.8

7
1
3
2

1
.9

6
1
8
7

6
.2

6
3
2

0
.4

7
1
4
0

4
.2

7
1
9
4

5
.8

6
3
5

1
.3

1

3
1
1
0

1
.7

8
2
9
8

1
4
.4

3
2
5

1
.3

8
1
1
8

1
.9

1
3
1
2

7
.6

8
2
8

0
.7

2
1
2
3

1
.1

2
3
2
2

7
.1

2
3
1

0
.7

9
1
3
5

5
.7

3
3
3
5

9
.9

2
3
6

2
.6

6

4
1
1
5

1
.5

3
4
3
4

1
5
.9

3
2
5

0
.5

3
1
2
4

1
.6

9
4
5
6

7
.7

3
2
8

1
.0

1
1
2
9

1
.3

1
4
7
2

8
.4

9
3
1

1
.0

4
1
4
0

3
.8

5
4
9
9

1
5
.3

3
3
5

0
.8

5

i6
8
6

1
5
8

0
.6

6
1
4

0
.3

7
1
3

0
.7

7
6
0

1
.8

4
1
4

0
.5

5
1
4

0
.6

6
6
1

1
.4

3
1
4

0
.5

3
1
5

0
.8

3
6
3

0
.8

8
1
4

0
.5

2
1
5

0
.9

0

2
5
6

1
.5

5
7
4

0
.8

6
1
2

0
.4

9
5
7

0
.8

9
7
6

2
.2

4
1
2

0
.5

7
5
9

0
.7

8
7
8

1
.5

7
1
3

1
.0

5
6
0

0
.7

5
7
9

1
.0

5
1
4

0
.9

8

3
5
4

1
.4

4
1
2
7

1
.1

4
1
2

1
.1

9
5
4

0
.8

5
1
3
1

2
.5

8
1
3

1
.3

0
5
7

1
.7

5
1
3
3

2
.7

1
1
4

1
.4

8
5
8

1
.8

2
1
3
5

1
.6

2
1
4

1
.2

1

4
5
7

1
.4

0
1
9
2

1
.3

3
1
3

1
.9

0
5
9

1
.1

2
1
9
6

3
.0

0
1
2

0
.9

5
6
0

1
.8

6
2
0
2

3
.3

1
1
3

1
.7

0
6
2

1
.5

6
2
0
5

2
.9

0
1
4

1
.3

9

S
a
m

p
le

st
a
n
d
a
rd

d
e
v
ia

ti
o
n
s

w
it
h

(S
R

IL
,
#

o
f
R
T

ta
sk

s)
=

(2
,
4
)

1
re

so
u
rc

e
2

re
so

u
rc

e
s

3
re

so
u
rc

e
s

4
re

so
u
rc

e
s

C
P
U

&
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U

ta
sk

#
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ

i4
8
6

1
1
4
7

6
.1

3
2
1

0
.7

0
3
4

2
.3

9
1
5
5

3
.6

3
2
2

0
.9

2
3
7

1
.7

4
1
6
0

3
.5

0
2
1

0
.6

5
4
1

1
.3

9
1
6
5

1
.5

0
2
1

0
.6

8
4
3

0
.6

5

2
1
1
8

2
.5

1
1
7
4

6
.2

6
2
5

0
.4

3
1
2
4

1
.7

1
1
8
2

4
.0

7
2
8

0
.7

8
1
3
2

2
.6

1
1
8
7

3
.9

2
3
2

0
.6

1
1
3
8

1
.6

6
1
9
1

1
.4

5
3
5

0
.5

6

3
1
1
0

2
.3

7
2
9
3

8
.5

4
2
5

1
.1

0
1
1
6

1
.7

4
3
0
8

7
.0

4
2
8

1
.1

1
1
2
3

1
.4

6
3
2
3

6
.6

8
3
1

0
.7

8
1
3
2

2
.5

8
3
3
0

2
.6

0
3
5

1
.0

1

4
1
1
6

3
.5

0
4
2
7

1
1
.1

2
2
5

0
.9

0
1
2
3

1
.5

4
4
5
0

7
.3

5
2
8

1
.3

7
1
2
9

2
.0

1
4
7
4

8
.3

8
3
1

0
.4

0
1
4
0

1
.6

6
4
9
1

3
.7

5
3
5

0
.7

2

i6
8
6

1
5
9

1
.5

4
1
4

0
.5

1
1
3

0
.6

0
6
0

1
.2

8
1
4

0
.3

4
1
4

0
.8

2
6
2

1
.3

8
1
4

0
.5

1
1
5

0
.5

4
6
4

2
.0

2
1
4

0
.3

3
1
5

1
.0

6

2
5
6

2
.0

0
7
5

1
.7

7
1
3

0
.4

7
5
7

0
.7

8
7
6

1
.3

1
1
3

0
.9

2
5
9

1
.2

7
7
8

1
.4

3
1
3

0
.6

2
6
0

1
.0

3
8
0

2
.1

1
1
5

1
.3

2

3
5
5

1
.7

2
1
2
8

2
.3

8
1
2

1
.0

1
5
4

1
.6

5
1
3
0

0
.9

7
1
3

1
.0

8
5
8

2
.5

4
1
3
3

2
.1

0
1
4

1
.0

1
5
7

0
.9

6
1
3
7

3
.1

8
1
4

1
.6

7

4
5
8

2
.4

3
1
9
4

3
.8

9
1
2

0
.7

7
5
8

2
.3

3
1
9
6

1
.6

7
1
3

1
.0

3
6
0

2
.0

1
2
0
2

4
.2

6
1
3

1
.2

3
6
2

1
.0

4
2
0
6

3
.4

8
1
3

1
.4

5

S
a
m

p
le

st
a
n
d
a
rd

d
e
v
ia

ti
o
n
s

w
it
h

(S
R

IL
,
#

o
f
R
T

ta
sk

s)
=

(5
,
4
)

1
re

so
u
rc

e
2

re
so

u
rc

e
s

3
re

so
u
rc

e
s

4
re

so
u
rc

e
s

C
P
U

&
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U

ta
sk

#
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ

i4
8
6

1
1
5
3

5
.7

6
2
1

1
.2

9
3
5

1
.7

3
1
6
0

8
.9

2
2
1

0
.7

1
4
0

3
.9

4
1
6
2

4
.8

1
2
1

0
.6

0
4
0

1
.3

5
1
6
6

6
.5

9
2
1

0
.7

9
4
4

1
.1

4

2
1
2
0

3
.2

0
1
8
0

7
.0

4
2
7

1
.3

5
1
2
7

4
.0

1
1
8
7

9
.0

7
2
9

1
.3

4
1
3
2

4
.4

0
1
8
9

4
.7

7
3
2

1
.1

5
1
3
8

1
.0

2
1
9
3

7
.2

4
3
5

0
.7

9

3
1
1
0

2
.4

4
3
0
1

1
0
.8

6
2
5

1
.4

2
1
1
7

2
.1

2
3
1
7

1
2
.2

2
2
9

0
.7

0
1
2
3

0
.8

6
3
2
4

6
.7

0
3
2

0
.7

2
1
3
1

0
.9

2
3
3
1

6
.6

7
3
6

1
.0

5

4
1
1
7

3
.4

4
4
3
7

1
3
.7

6
2
5

1
.1

3
1
2
3

1
.2

4
4
6
1

1
3
.8

4
2
7

0
.9

7
1
2
9

1
.2

4
4
7
4

7
.0

1
3
1

0
.5

3
1
3
9

2
.4

1
4
9
1

7
.7

0
3
5

1
.4

3

i6
8
6

1
5
8

0
.2

9
1
4

0
.4

5
1
4

0
.6

4
6
0

2
.1

0
1
4

0
.4

0
1
3

0
.5

6
6
2

0
.9

9
1
4

0
.4

9
1
5

1
.2

7
6
3

1
.2

0
1
4

0
.6

0
1
5

0
.9

7

2
5
6

1
.2

0
7
4

0
.5

9
1
2

0
.8

2
5
7

0
.6

5
7
7

1
.9

8
1
3

0
.6

6
5
8

0
.7

7
7
8

1
.1

1
1
4

1
.0

7
6
0

1
.1

9
8
0

1
.6

3
1
4

0
.9

0

3
5
4

1
.9

0
1
2
7

1
.7

2
1
3

1
.1

3
5
4

0
.7

9
1
3
1

3
.0

3
1
2

1
.3

6
5
7

1
.4

0
1
3
3

1
.4

0
1
4

1
.4

6
5
8

1
.6

6
1
3
6

2
.2

1
1
5

1
.4

1

4
5
8

1
.9

6
1
9
1

1
.5

0
1
3

1
.6

0
5
8

1
.0

6
1
9
7

2
.8

5
1
2

0
.9

5
6
1

1
.6

7
2
0
1

1
.7

1
1
3

1
.5

4
6
2

1
.8

9
2
0
6

1
.9

8
1
4

1
.6

5

E. Test results with sample standard deviations 47

S
a
m

p
le

st
a
n
d
a
rd

d
e
v
ia

ti
o
n
s

w
it
h

(S
R

IL
,
#

o
f
R
T

ta
sk

s)
=

(1
0
,
4
)

1
re

so
u
rc

e
2

re
so

u
rc

e
s

3
re

so
u
rc

e
s

4
re

so
u
rc

e
s

C
P
U

&
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U

ta
sk

#
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ

i4
8
6

1
1
5
1

7
.5

8
2
1

0
.8

4
3
5

2
.7

3
1
5
4

3
.8

5
2
1

0
.6

4
3
7

1
.8

4
1
6
3

9
.3

2
2
1

0
.5

2
4
2

5
.0

7
1
6
8

7
.3

0
2
1

0
.6

4
4
3

0
.7

2

2
1
1
8

2
.8

7
1
7
7

8
.0

5
2
5

0
.2

6
1
2
3

0
.9

0
1
8
1

4
.2

3
2
9

0
.4

2
1
3
3

4
.3

7
1
8
9

9
.5

6
3
2

0
.4

1
1
3
8

2
.3

4
1
9
4

7
.5

9
3
5

1
.2

9

3
1
1
0

2
.1

3
2
9
6

1
2
.5

1
2
5

0
.8

2
1
1
5

2
.0

7
3
0
5

3
.0

8
2
8

1
.0

1
1
2
3

1
.8

0
3
2
4

1
1
.3

0
3
1

0
.9

7
1
3
2

2
.8

2
3
3
4

1
0
.6

1
3
5

1
.1

8

4
1
1
6

3
.2

3
4
3
1

1
5
.1

7
2
6

1
.3

5
1
2
4

2
.1

8
4
4
6

4
.8

2
2
8

0
.8

0
1
2
9

4
.0

7
4
7
5

1
2
.2

6
3
1

0
.6

0
1
3
9

3
.8

8
4
9
5

1
3
.2

1
3
6

3
.0

1

i6
8
6

1
5
7

1
.2

2
1
4

0
.5

2
1
3

0
.5

8
6
1

1
.2

8
1
4

0
.3

5
1
4

0
.9

6
6
3

2
.1

2
1
4

0
.4

7
1
5

1
.2

3
6
3

1
.1

0
1
4

0
.4

8
1
5

0
.9

2

2
5
6

0
.6

0
7
4

1
.1

7
1
2

0
.6

3
5
7

1
.0

1
7
7

1
.1

8
1
3

0
.4

7
5
9

0
.9

9
7
9

2
.0

1
1
3

0
.8

6
5
9

0
.6

8
8
0

0
.8

9
1
4

1
.0

9

3
5
3

0
.8

0
1
2
6

1
.5

7
1
2

0
.9

1
5
5

1
.0

0
1
3
1

2
.0

8
1
2

0
.9

5
5
7

2
.5

9
1
3
4

2
.3

5
1
5

1
.3

1
5
7

0
.7

2
1
3
6

1
.4

4
1
4

1
.1

1

4
5
8

0
.9

0
1
9
0

1
.9

0
1
3

1
.0

0
5
8

1
.0

1
1
9
8

2
.7

7
1
2

1
.1

4
6
0

1
.7

2
2
0
3

4
.3

4
1
3

1
.3

1
6
2

0
.5

8
2
0
5

1
.1

1
1
4

0
.7

4

S
a
m

p
le

st
a
n
d
a
rd

d
e
v
ia

ti
o
n
s

w
it
h

(S
R

IL
,
#

o
f
R
T

ta
sk

s)
=

(2
0
,
4
)

1
re

so
u
rc

e
2

re
so

u
rc

e
s

3
re

so
u
rc

e
s

4
re

so
u
rc

e
s

C
P
U

&
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U

ta
sk

#
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ

i4
8
6

1
1
5
2

6
.8

2
2
1

0
.4

6
3
5

2
.0

4
1
5
6

7
.0

6
2
1

0
.7

4
3
7

1
.9

4
1
6
1

4
.5

1
2
1

0
.9

6
4
1

1
.2

1
1
7
1

1
2
.8

5
2
1

0
.5

6
4
7

6
.3

5

2
1
1
8

2
.4

9
1
7
8

7
.2

1
2
6

1
.1

6
1
2
5

3
.7

8
1
8
2

7
.4

4
2
8

0
.6

2
1
3
2

3
.2

1
1
8
8

5
.0

3
3
2

1
.0

6
1
3
8

2
.9

3
1
9
8

1
2
.9

8
3
5

1
.7

3

3
1
0
9

2
.6

5
2
9
7

1
1
.3

2
2
6

1
.4

6
1
1
7

2
.3

8
3
0
6

1
2
.6

1
2
8

1
.0

6
1
2
4

2
.1

6
3
2
3

8
.7

8
3
1

0
.9

8
1
3
2

2
.2

9
3
3
7

1
5
.7

3
3
6

1
.2

8

4
1
1
6

2
.9

1
4
3
1

1
3
.7

5
2
4

1
.3

6
1
2
4

1
.8

5
4
5
0

1
3
.0

0
2
8

0
.6

0
1
3
0

2
.2

4
4
7
5

1
1
.2

3
3
2

1
.1

8
1
3
9

0
.7

1
4
9
9

1
7
.2

1
3
5

1
.1

9

i6
8
6

1
5
8

1
.3

3
1
4

0
.3

7
1
3

0
.9

1
5
9

0
.8

3
1
4

0
.3

5
1
4

0
.5

4
6
2

1
.1

0
1
4

0
.6

2
1
5

1
.1

6
6
3

0
.9

4
1
4

0
.3

4
1
5

0
.9

5

2
5
6

0
.9

4
7
4

1
.1

7
1
2

0
.7

1
5
8

1
.4

2
7
6

0
.8

9
1
3

0
.8

3
5
9

1
.0

1
7
9

1
.2

5
1
4

1
.3

2
6
0

0
.9

9
8
0

0
.9

2
1
4

1
.0

7

3
5
4

1
.7

6
1
2
8

2
.6

1
1
3

1
.3

2
5
5

2
.0

4
1
3
1

2
.2

0
1
2

0
.8

4
5
7

0
.8

6
1
3
5

2
.5

0
1
4

0
.8

3
5
7

1
.2

6
1
3
6

0
.9

6
1
4

0
.9

3

4
5
7

1
.4

9
1
9
3

1
.7

5
1
2

1
.2

4
5
9

1
.1

9
1
9
8

3
.2

1
1
2

1
.0

2
6
0

0
.6

3
2
0
4

2
.8

9
1
3

1
.2

3
6
2

1
.8

6
2
0
6

1
.1

4
1
4

1
.5

3

S
a
m

p
le

st
a
n
d
a
rd

d
e
v
ia

ti
o
n
s

w
it
h

(S
R

IL
,
#

o
f
R
T

ta
sk

s)
=

(0
,
6
)

1
re

so
u
rc

e
2

re
so

u
rc

e
s

3
re

so
u
rc

e
s

4
re

so
u
rc

e
s

C
P
U

&
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U

ta
sk

#
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ

i4
8
6

1
1
5
0

3
.7

2
2
1

0
.6

7
3
6

3
.2

1
1
5
6

3
.7

4
2
1

0
.9

0
3
7

2
.3

5
1
6
1

5
.0

0
2
1

1
.2

1
4
0

2
.3

6
1
6
8

6
.2

0
2
0

1
.1

5
4
3

1
.5

0

2
1
2
1

1
.7

7
1
7
7

3
.8

4
2
6

0
.9

2
1
2
9

2
.9

1
1
8
2

4
.2

9
2
9

1
.5

5
1
3
5

1
.2

5
1
8
7

6
.1

4
3
2

0
.8

6
1
4
3

3
.8

2
1
9
5

7
.3

4
3
5

0
.6

7

3
1
1
2

0
.8

9
2
9
9

4
.5

1
2
5

1
.3

1
1
2
0

2
.5

5
3
1
4

5
.2

7
2
8

1
.3

2
1
2
6

1
.1

6
3
2
3

6
.7

2
3
1

0
.6

3
1
3
4

2
.0

3
3
3
9

1
0
.1

2
3
5

1
.2

6

4
1
1
8

0
.7

0
4
3
7

5
.1

2
2
4

1
.1

8
1
2
7

1
.7

6
4
6
1

6
.8

4
2
8

1
.2

4
1
3
1

1
.2

4
4
7
6

7
.0

1
3
1

1
.0

1
1
4
2

3
.2

9
5
0
3

1
2
.4

3
3
5

1
.3

1

5
1
2
3

2
.0

5
4
5
0

5
.2

9
2
6

1
.0

1
1
3
2

3
.0

0
4
7
6

8
.3

9
3
0

0
.4

8
1
4
0

2
.3

1
4
9
4

8
.0

9
3
4

1
.3

9
1
4
7

3
.9

4
5
2
0

1
3
.9

3
3
6

1
.4

4

6
1
2
3

3
.7

7
5
7
4

4
.8

4
2
7

1
.9

5
1
3
4

3
.6

0
6
0
8

1
0
.2

1
2
9

1
.2

5
1
3
7

1
.5

2
6
3
4

8
.9

7
3
3

0
.5

8
1
4
9

3
.0

8
6
6
7

1
7
.1

7
3
6

1
.0

2

i6
8
6

1
5
9

1
.5

8
1
4

0
.6

5
1
2

0
.6

1
6
0

1
.0

4
1
4

0
.3

4
1
4

0
.7

2
6
3

1
.5

1
1
4

0
.5

1
1
5

1
.5

8
6
4

1
.1

1
1
4

0
.4

4
1
5

0
.9

5

2
5
6

0
.6

9
7
5

1
.9

2
1
2

0
.8

8
5
8

1
.8

2
7
6

1
.3

7
1
3

0
.4

9
6
0

0
.9

8
7
9

1
.7

9
1
3

0
.7

0
6
0

1
.1

8
8
0

1
.1

6
1
3

0
.7

0

3
5
4

1
.2

6
1
2
8

2
.8

1
1
2

1
.0

0
5
6

1
.9

5
1
3
1

2
.5

1
1
3

1
.1

5
5
8

1
.2

2
1
3
5

2
.3

3
1
4

1
.4

0
5
9

0
.8

1
1
3
7

0
.8

1
1
3

1
.4

6

4
5
7

1
.6

1
1
9
3

2
.5

8
1
2

0
.9

8
5
9

1
.3

7
1
9
8

4
.1

7
1
2

1
.1

7
6
0

2
.2

0
2
0
5

3
.5

6
1
3

0
.6

3
6
3

0
.5

4
2
0
8

1
.3

8
1
4

1
.6

9

5
6
0

1
.1

9
1
9
9

2
.3

8
1
4

1
.2

5
6
2

1
.2

0
2
0
5

4
.3

3
1
3

0
.8

2
6
5

1
.4

5
2
1
1

4
.0

1
1
4

1
.2

5
6
6

0
.7

9
2
1
6

1
.3

7
1
6

1
.1

7

6
6
1

1
.4

1
2
5
9

1
.6

8
1
2

1
.3

2
6
3

2
.5

8
2
6
7

4
.2

0
1
4

1
.1

9
6
5

1
.6

1
2
7
7

4
.8

0
1
5

2
.4

3
6
5

0
.8

2
2
8
2

1
.4

8
1
5

1
.5

5

E. Test results with sample standard deviations 48

S
a
m

p
le

st
a
n
d
a
rd

d
e
v
ia

ti
o
n
s

w
it
h

(S
R

IL
,
#

o
f
R
T

ta
sk

s)
=

(2
,
6
)

1
re

so
u
rc

e
2

re
so

u
rc

e
s

3
re

so
u
rc

e
s

4
re

so
u
rc

e
s

C
P
U

&
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U

ta
sk

#
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ

i4
8
6

1
1
4
9

3
.9

3
2
1

1
.2

5
3
3

0
.7

3
1
5
8

4
.3

1
2
0

0
.7

5
3
8

2
.4

9
1
6
0

4
.0

5
2
0

0
.8

1
4
0

1
.4

6
1
6
5

2
.2

3
2
0

0
.5

1
4
3

0
.9

6

2
1
2
1

1
.7

6
1
7
5

5
.2

5
2
6

0
.8

5
1
2
9

4
.0

0
1
8
3

4
.2

9
2
9

1
.8

3
1
3
4

0
.5

4
1
8
5

4
.5

7
3
1

0
.6

5
1
4
1

1
.9

4
1
9
1

2
.3

8
3
4

0
.7

2

3
1
1
3

2
.2

4
2
9
9

6
.1

7
2
6

1
.9

0
1
2
0

2
.9

9
3
1
5

8
.3

4
2
9

1
.7

4
1
2
6

1
.4

0
3
2
2

5
.1

7
3
1

0
.7

0
1
3
3

1
.5

8
3
3
4

5
.4

5
3
5

1
.2

0

4
1
1
9

2
.2

9
4
3
7

8
.3

6
2
5

1
.6

4
1
2
7

2
.4

1
4
6
2

1
0
.8

7
2
8

0
.7

9
1
3
1

2
.3

8
4
7
7

4
.6

2
3
1

0
.7

9
1
4
1

1
.1

6
4
9
6

5
.2

1
3
5

1
.5

9

5
1
2
4

2
.0

4
4
5
4

7
.6

1
2
6

1
.4

3
1
3
3

3
.5

8
4
7
6

1
1
.1

6
3
0

1
.9

3
1
4
0

2
.8

0
4
9
2

6
.2

4
3
3

1
.3

0
1
4
7

1
.5

1
5
1
4

2
.9

6
3
6

1
.1

8

6
1
2
2

1
.0

1
5
7
8

7
.4

1
2
6

1
.3

7
1
3
3

3
.0

6
6
0
9

1
4
.4

7
3
0

0
.7

7
1
3
9

1
.7

3
6
3
1

8
.0

6
3
4

1
.4

3
1
4
7

2
.3

7
6
6
1

2
.6

6
3
7

1
.1

8

i6
8
6

1
5
9

1
.3

4
1
4

0
.5

4
1
3

0
.8

8
5
9

1
.4

6
1
4

0
.3

0
1
3

1
.0

2
6
2

1
.7

1
1
4

0
.3

7
1
5

0
.9

8
6
4

1
.3

0
1
4

0
.6

2
1
5

1
.1

4

2
5
6

0
.8

9
7
5

1
.1

5
1
2

0
.4

0
5
8

0
.8

5
7
6

1
.5

6
1
3

0
.6

7
6
0

0
.9

5
7
9

1
.7

0
1
3

0
.9

9
6
1

0
.8

0
8
0

1
.4

3
1
3

0
.5

2

3
5
4

1
.1

7
1
2
8

2
.1

5
1
2

1
.2

0
5
5

2
.1

7
1
3
0

1
.6

3
1
2

1
.3

2
5
8

1
.4

1
1
3
5

2
.9

4
1
4

1
.9

5
5
9

1
.4

7
1
3
7

1
.7

8
1
3

0
.6

5

4
5
8

1
.9

8
1
9
4

2
.2

2
1
2

1
.6

9
5
9

1
.0

5
1
9
7

2
.8

8
1
2

0
.8

9
6
1

1
.2

2
2
0
5

4
.0

1
1
3

2
.0

1
6
3

1
.7

9
2
0
8

2
.1

3
1
4

1
.5

9

5
6
0

1
.9

6
2
0
0

2
.1

1
1
3

1
.8

1
6
2

1
.9

4
2
0
4

2
.8

3
1
4

1
.6

0
6
5

1
.2

3
2
1
2

2
.9

7
1
5

1
.1

0
6
6

1
.2

2
2
1
6

1
.9

5
1
5

1
.5

9

6
6
0

1
.7

7
2
6
1

2
.9

4
1
3

1
.6

7
6
2

2
.0

4
2
6
6

2
.8

9
1
5

2
.3

0
6
5

1
.1

4
2
7
7

2
.9

6
1
5

1
.2

7
6
5

0
.5

3
2
8
2

2
.5

0
1
4

1
.4

4

S
a
m

p
le

st
a
n
d
a
rd

d
e
v
ia

ti
o
n
s

w
it
h

(S
R

IL
,
#

o
f
R
T

ta
sk

s)
=

(5
,
6
)

1
re

so
u
rc

e
2

re
so

u
rc

e
s

3
re

so
u
rc

e
s

4
re

so
u
rc

e
s

C
P
U

&
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U

ta
sk

#
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ

i4
8
6

1
1
5
3

1
0
.0

8
2
0

0
.6

0
3
5

4
.6

0
1
5
7

4
.5

5
2
1

0
.9

2
3
6

0
.8

0
1
6
1

3
.9

4
2
1

0
.6

5
4
2

2
.4

6
1
6
9

3
.2

0
2
1

0
.8

4
4
4

1
.8

9

2
1
2
2

2
.0

3
1
7
9

1
0
.7

0
2
6

1
.4

4
1
2
9

4
.5

9
1
8
3

5
.1

4
2
9

0
.8

8
1
3
4

0
.9

7
1
8
7

4
.1

7
3
2

0
.6

0
1
4
1

1
.9

5
1
9
6

3
.7

9
3
5

0
.6

7

3
1
1
3

3
.0

5
3
0
3

1
1
.7

0
2
5

1
.2

1
1
2
0

2
.1

5
3
1
3

1
0
.5

2
2
8

1
.2

4
1
2
6

2
.3

0
3
2
3

6
.3

6
3
2

0
.9

1
1
3
4

2
.2

4
3
4
0

4
.8

2
3
5

0
.9

7

4
1
1
9

1
.6

7
4
4
2

1
4
.5

7
2
5

1
.0

0
1
2
6

1
.5

1
4
6
0

1
0
.7

0
2
8

1
.0

8
1
3
1

1
.0

8
4
7
7

6
.4

1
3
1

0
.6

8
1
4
2

1
.6

3
5
0
3

7
.0

0
3
5

1
.4

3

5
1
2
4

2
.3

8
4
5
5

1
3
.7

8
2
6

1
.8

7
1
3
1

1
.3

5
4
7
7

1
4
.2

1
2
9

0
.8

8
1
3
9

2
.2

5
4
9
5

6
.2

8
3
3

1
.1

8
1
4
7

0
.9

0
5
1
8

9
.1

1
3
6

0
.9

4

6
1
2
3

2
.2

0
5
7
9

1
3
.8

6
2
6

2
.7

6
1
3
3

1
.4

8
6
0
8

1
4
.7

2
3
0

0
.6

1
1
3
8

2
.2

3
6
3
4

6
.5

1
3
3

1
.7

6
1
4
7

1
.6

2
6
6
4

8
.9

1
3
6

1
.2

7

i6
8
6

1
5
9

1
.4

9
1
4

0
.4

0
1
3

0
.4

6
6
0

2
.1

9
1
4

0
.3

4
1
3

0
.8

9
6
3

1
.4

1
1
4

0
.3

8
1
4

0
.8

4
6
4

1
.0

4
1
4

0
.4

2
1
5

0
.4

1

2
5
6

0
.9

2
7
5

1
.5

7
1
2

0
.7

9
5
8

1
.4

7
7
6

2
.4

7
1
3

1
.0

1
6
0

1
.0

5
7
9

1
.7

0
1
3

1
.4

6
6
1

1
.2

0
8
0

1
.1

8
1
4

0
.8

2

3
5
4

1
.4

7
1
2
8

2
.4

1
1
2

1
.0

2
5
5

1
.4

2
1
3
0

1
.9

7
1
3

0
.6

2
5
8

1
.8

1
1
3
6

2
.5

6
1
3

0
.9

9
5
8

1
.0

5
1
3
6

1
.7

2
1
3

0
.8

1

4
5
8

1
.8

5
1
9
3

2
.9

7
1
2

0
.8

2
6
0

1
.0

8
1
9
6

2
.3

6
1
2

0
.7

0
6
1

1
.2

4
2
0
6

2
.7

1
1
3

1
.1

6
6
3

1
.0

4
2
0
7

2
.2

3
1
4

1
.4

8

5
6
1

1
.7

4
2
0
0

2
.7

4
1
3

1
.0

6
6
2

1
.3

1
2
0
4

3
.4

8
1
4

1
.5

6
6
5

1
.0

6
2
1
1

1
.9

6
1
4

1
.1

1
6
7

1
.0

1
2
1
6

2
.1

5
1
5

1
.9

3

6
6
0

1
.8

8
2
6
1

3
.1

4
1
4

1
.2

5
6
1

1
.5

7
2
6
6

3
.8

9
1
5

0
.7

3
6
5

1
.6

0
2
7
6

1
.7

8
1
4

0
.9

4
6
5

1
.8

6
2
8
3

2
.3

6
1
4

1
.4

9

S
a
m

p
le

st
a
n
d
a
rd

d
e
v
ia

ti
o
n
s

w
it
h

(S
R

IL
,
#

o
f
R
T

ta
sk

s)
=

(1
0
,
6
)

1
re

so
u
rc

e
2

re
so

u
rc

e
s

3
re

so
u
rc

e
s

4
re

so
u
rc

e
s

C
P
U

&
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U

ta
sk

#
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ

i4
8
6

1
1
5
2

6
.8

1
2
1

0
.8

2
3
5

3
.6

3
1
5
8

5
.0

3
2
1

0
.7

3
3
8

1
.8

2
1
6
3

7
.9

4
2
1

0
.7

9
4
1

4
.0

1
1
6
7

4
.3

3
2
0

0
.9

5
4
4

1
.7

4

2
1
2
3

4
.9

8
1
7
8

7
.4

2
2
6

1
.5

2
1
2
9

3
.6

6
1
8
4

5
.4

8
2
9

0
.9

8
1
3
5

1
.9

7
1
9
0

7
.8

1
3
2

1
.6

0
1
4
2

3
.1

4
1
9
3

4
.4

8
3
6

2
.1

9

3
1
1
2

1
.6

6
3
0
3

1
3
.5

0
2
4

1
.3

5
1
1
9

1
.1

8
3
1
7

9
.5

8
2
8

0
.8

2
1
2
6

3
.0

2
3
2
6

9
.1

9
3
1

0
.9

3
1
3
5

3
.5

4
3
3
7

8
.5

9
3
6

1
.3

4

4
1
1
8

1
.5

7
4
4
1

1
4
.8

9
2
5

1
.2

4
1
2
8

3
.2

3
4
6
3

1
0
.4

6
2
8

1
.1

5
1
3
2

2
.1

0
4
8
1

9
.3

3
3
1

1
.2

4
1
4
1

2
.4

4
5
0
2

1
1
.3

4
3
6

2
.1

0

5
1
2
4

1
.8

4
4
5
8

1
4
.0

0
2
6

1
.6

2
1
3
2

2
.1

3
4
7
9

1
1
.0

4
3
0

0
.4

2
1
4
0

1
.6

8
5
0
0

1
1
.4

9
3
3

1
.1

8
1
4
6

2
.3

4
5
2
0

8
.5

1
3
6

1
.0

8

6
1
2
2

1
.2

7
5
8
2

1
4
.9

5
2
6

1
.2

5
1
3
3

2
.9

9
6
1
0

1
1
.0

6
3
0

0
.6

1
1
3
8

2
.1

8
6
4
0

1
2
.8

3
3
3

1
.0

9
1
4
6

1
.1

4
6
6
6

1
0
.3

6
3
6

1
.5

0

i6
8
6

1
5
9

0
.7

6
1
4

0
.3

5
1
3

1
.4

8
6
0

0
.9

1
1
4

0
.3

9
1
3

0
.5

4
6
3

1
.3

9
1
4

0
.5

2
1
4

1
.3

8
6
3

0
.6

8
1
4

0
.5

8
1
5

1
.2

4

2
5
5

0
.9

9
7
5

1
.0

2
1
2

0
.6

2
5
8

1
.6

3
7
7

0
.9

5
1
3

0
.5

0
6
0

0
.6

9
8
0

1
.5

4
1
3

0
.7

9
6
1

0
.7

3
8
0

0
.9

8
1
3

0
.6

5

3
5
5

1
.9

0
1
2
7

1
.0

9
1
2

1
.0

5
5
6

2
.0

6
1
3
1

2
.7

0
1
2

1
.0

6
5
9

0
.6

7
1
3
6

1
.7

3
1
4

1
.2

6
5
9

0
.6

3
1
3
7

1
.3

0
1
3

1
.1

9

4
5
8

2
.0

7
1
9
3

1
.7

0
1
2

1
.6

4
6
0

1
.4

0
1
9
8

4
.0

3
1
2

0
.8

0
6
0

1
.6

4
2
0
7

1
.8

0
1
4

1
.3

8
6
3

1
.1

2
2
0
8

1
.3

1
1
4

1
.5

1

5
6
0

2
.0

1
1
9
9

1
.4

8
1
3

0
.9

2
6
2

1
.2

7
2
0
6

4
.1

7
1
4

2
.0

7
6
5

1
.3

8
2
1
3

2
.3

4
1
5

1
.5

8
6
6

1
.3

1
2
1
6

1
.4

4
1
5

1
.7

8

6
6
0

1
.3

6
2
5
9

1
.9

5
1
3

1
.3

1
6
2

2
.1

8
2
6
8

4
.5

6
1
5

1
.2

5
6
4

1
.1

0
2
7
7

2
.6

7
1
5

1
.4

5
6
5

0
.4

4
2
8
2

1
.8

2
1
5

1
.4

4

E. Test results with sample standard deviations 49

S
a
m

p
le

st
a
n
d
a
rd

d
e
v
ia

ti
o
n
s

w
it
h

(S
R

IL
,
#

o
f
R
T

ta
sk

s)
=

(2
0
,
6
)

1
re

so
u
rc

e
2

re
so

u
rc

e
s

3
re

so
u
rc

e
s

4
re

so
u
rc

e
s

C
P
U

&
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U

ta
sk

#
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ

i4
8
6

1
1
5
1

6
.2

2
2
1

0
.3

6
3
5

2
.7

8
1
5
8

6
.5

6
2
1

0
.7

2
3
7

1
.0

9
1
6
3

7
.4

7
2
0

0
.9

6
4
0

2
.0

8
1
6
7

3
.1

7
2
0

0
.3

3
4
4

1
.2

9

2
1
2
0

1
.7

3
1
7
7

6
.3

0
2
6

1
.2

7
1
2
9

3
.4

8
1
8
4

6
.3

6
2
8

0
.4

5
1
3
6

4
.1

1
1
8
9

7
.5

9
3
2

0
.6

8
1
4
2

3
.3

9
1
9
3

3
.4

3
3
5

1
.2

0

3
1
1
3

2
.5

5
2
9
9

7
.3

2
2
4

2
.1

2
1
1
8

1
.0

4
3
1
7

9
.7

4
2
8

0
.9

3
1
2
6

2
.0

5
3
2
7

1
1
.3

8
3
1

0
.8

8
1
3
4

1
.2

9
3
4
0

4
.5

2
3
5

0
.8

7

4
1
1
8

3
.2

7
4
3
8

8
.1

7
2
5

1
.6

2
1
2
6

1
.5

7
4
6
3

1
0
.3

9
2
8

0
.9

5
1
3
2

4
.2

0
4
8
1

1
3
.3

2
3
1

0
.8

2
1
4
1

2
.1

7
5
0
4

5
.3

6
3
5

1
.5

1

5
1
2
2

0
.8

7
4
5
2

9
.5

9
2
6

1
.3

7
1
3
1

2
.1

7
4
7
6

1
3
.8

6
3
0

0
.7

3
1
4
0

4
.5

0
4
9
8

1
7
.8

4
3
2

1
.0

8
1
4
8

2
.9

3
5
1
6

6
.2

5
3
7

1
.4

9

6
1
2
3

3
.6

9
5
7
5

9
.7

6
2
7

1
.2

7
1
3
3

3
.2

5
6
0
7

1
4
.0

5
2
9

1
.1

5
1
3
8

3
.8

5
6
3
3

1
2
.7

6
3
3

0
.8

5
1
4
6

2
.0

9
6
6
4

6
.7

7
3
6

1
.5

7

i6
8
6

1
5
9

0
.8

2
1
4

0
.4

4
1
3

0
.4

0
6
0

1
.0

6
1
4

0
.5

3
1
3

0
.6

5
6
3

1
.4

6
1
4

0
.4

4
1
5

0
.7

7
6
4

1
.7

1
1
4

0
.4

5
1
5

1
.1

3

2
5
6

1
.0

3
7
5

1
.1

2
1
2

0
.4

2
5
7

0
.7

2
7
6

1
.2

9
1
3

0
.7

7
5
9

0
.7

4
7
9

1
.7

2
1
3

0
.8

5
6
1

0
.9

5
8
0

2
.0

8
1
4

0
.9

7

3
5
4

1
.1

0
1
2
8

1
.7

1
1
2

1
.3

4
5
5

0
.8

4
1
3
0

2
.1

4
1
2

1
.0

3
5
8

1
.0

0
1
3
5

3
.4

3
1
4

1
.4

5
5
9

1
.5

5
1
3
7

2
.9

4
1
4

0
.7

9

4
5
8

1
.8

2
1
9
3

2
.0

6
1
2

1
.3

5
6
0

1
.9

6
1
9
7

2
.4

1
1
3

1
.0

6
6
0

1
.3

6
2
0
6

2
.8

5
1
3

1
.5

6
6
4

1
.9

9
2
0
8

4
.4

5
1
4

1
.1

0

5
6
0

0
.9

1
2
0
0

1
.5

6
1
3

1
.1

3
6
2

1
.0

5
2
0
4

2
.3

8
1
3

1
.1

3
6
5

0
.9

4
2
1
2

2
.9

4
1
5

0
.9

4
6
7

1
.6

3
2
1
7

3
.6

1
1
6

1
.5

1

6
6
1

1
.0

1
2
6
0

1
.8

1
1
3

1
.4

5
6
2

0
.8

3
2
6
6

2
.6

5
1
4

0
.8

9
6
4

1
.4

6
2
7
7

2
.9

9
1
5

2
.0

4
6
5

1
.1

9
2
8
4

5
.0

5
1
6

1
.0

2

S
a
m

p
le

st
a
n
d
a
rd

d
e
v
ia

ti
o
n
s

w
it
h

(S
R

IL
,
#

o
f
R
T

ta
sk

s)
=

(0
,
1
0
)

1
re

so
u
rc

e
2

re
so

u
rc

e
s

3
re

so
u
rc

e
s

4
re

so
u
rc

e
s

C
P
U

&
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U

ta
sk

#
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ

i4
8
6

1
1
5
3

4
.0

0
2
2

0
.6

7
3
3

1
.3

3
1
5
6

3
.3

8
2
1

0
.9

1
3
6

1
.3

8
1
6
4

4
.6

4
2
3

1
.3

6
4
0

2
.3

5
1
7
2

4
.5

2
2
2

0
.9

0
4
3

2
.2

6

2
1
3
0

1
.8

0
1
8
0

4
.2

2
2
7

1
.0

7
1
3
9

1
.6

7
1
8
3

3
.8

9
3
1

0
.7

5
1
4
9

6
.3

4
1
9
4

7
.0

5
3
5

0
.5

5
1
5
3

2
.3

0
2
0
7

5
.1

7
3
8

0
.9

5

3
1
2
4

3
.2

9
3
1
8

6
.2

9
2
7

2
.0

5
1
3
1

2
.3

0
3
2
8

3
.8

1
3
1

0
.6

3
1
4
1

4
.2

4
3
4
8

1
3
.4

9
3
3

0
.7

5
1
4
6

2
.3

5
3
6
0

7
.8

3
3
7

1
.0

0

4
1
3
2

4
.0

9
4
7
0

6
.2

4
2
7

0
.8

6
1
4
0

2
.5

3
4
8
8

3
.9

6
3
0

0
.4

2
1
4
6

2
.7

3
5
1
9

1
4
.2

5
3
3

0
.9

2
1
5
5

3
.6

3
5
3
8

1
0
.3

0
3
7

0
.9

5

5
1
3
6

3
.2

4
4
7
8

5
.3

2
2
7

1
.7

8
1
4
3

0
.5

4
5
0
1

4
.8

6
3
2

0
.8

5
1
5
6

4
.3

0
5
2
8

1
1
.4

3
3
5

1
.4

6
1
6
1

3
.3

3
5
5
9

1
1
.2

9
3
9

1
.6

3

6
1
3
5

3
.0

2
6
1
4

7
.7

9
2
8

1
.3

2
1
4
6

1
.7

2
6
4
4

4
.8

3
3
2

1
.9

7
1
5
4

3
.9

7
6
8
3

1
3
.4

4
3
6

1
.5

3
1
6
2

2
.4

5
7
2
1

1
3
.1

0
3
9

1
.2

8

7
1
4
1

1
.9

8
7
4
2

7
.7

1
2
8

0
.7

3
1
5
0

2
.4

3
7
8
2

5
.2

4
3
2

1
.5

6
1
5
7

5
.2

6
8
2
3

1
8
.6

4
3
4

2
.0

3
1
7
6

2
.3

5
8
6
4

1
6
.7

0
5
3

2
0
.8

0

8
1
3
8

2
.1

8
8
8
3

7
.4

3
2
8

1
.4

6
1
5
0

3
.9

0
9
6
0

1
5
.0

4
3
2

1
.3

6
1
6
4

1
1
.2

2
1
0
1
5

1
9
.1

4
3
8

1
0
.1

3
1
8
5

4
.6

1
1
0
7
6

1
8
.6

6
4
8

1
7
.8

5

9
1
5
2

5
.9

2
7
8
9

8
.1

2
2
9

1
.0

2
1
5
6

2
.9

8
8
4
1

8
.9

1
3
2

2
.0

4
1
6
7

4
.5

4
8
8
7

2
4
.1

7
3
6

1
.8

8
1
7
4

3
.6

5
9
4
6

1
7
.3

2
3
9

1
.0

4

1
0

1
5
1

4
.0

9
9
4
1

1
1
.6

3
2
9

1
.2

0
1
5
8

3
.1

6
9
9
8

9
.1

7
3
3

2
.1

9
1
6
8

7
.2

5
1
0
5
4

2
3
.9

1
3
6

1
.4

5
2
0
4

3
.5

4
1
1
2
0

1
8
.4

6
7
7

3
1
.0

8

i6
8
6

1
6
0

0
.9

6
1
4

0
.3

4
1
3

0
.9

4
6
1

0
.9

7
1
4

0
.4

7
1
4

1
.2

1
6
4

1
.0

9
1
4

0
.5

2
1
5

1
.2

6
6
6

1
.8

1
1
4

0
.4

4
1
5

0
.9

1

2
5
7

0
.9

7
7
6

1
.0

9
1
2

0
.5

6
5
9

1
.6

5
7
7

1
.1

7
1
3

0
.6

8
6
0

0
.6

1
8
0

1
.0

2
1
3

0
.7

1
6
2

1
.2

0
8
2

1
.8

0
1
4

1
.0

1

3
5
5

1
.4

0
1
3
0

1
.8

5
1
2

0
.7

8
5
7

1
.2

2
1
3
3

2
.6

1
1
2

0
.9

1
5
9

0
.6

1
1
3
7

1
.9

2
1
4

0
.8

2
5
9

1
.0

6
1
4
1

2
.9

6
1
4

1
.5

6

4
5
8

1
.0

9
1
9
7

2
.1

0
1
2

1
.3

5
5
9

1
.2

8
2
0
2

3
.4

7
1
3

1
.4

3
6
1

1
.5

4
2
0
9

2
.4

3
1
4

1
.4

9
6
4

0
.5

5
2
1
2

2
.2

8
1
4

1
.3

2

5
6
1

1
.7

1
2
0
2

2
.4

0
1
4

1
.3

1
6
2

1
.9

0
2
0
8

2
.3

1
1
5

1
.6

5
6
5

0
.9

4
2
1
5

1
.7

2
1
5

1
.3

2
6
7

1
.1

1
2
2
0

1
.0

1
1
5

1
.8

1

6
6
1

1
.9

3
2
6
3

1
.4

5
1
3

1
.7

4
6
3

1
.8

6
2
7
0

2
.3

9
1
3

0
.8

8
6
5

1
.2

3
2
8
0

1
.9

1
1
5

0
.8

5
6
6

1
.2

5
2
8
6

1
.4

0
1
5

1
.7

3

7
6
4

1
.1

6
3
1
2

3
.2

5
1
3

1
.5

9
6
6

1
.4

3
3
2
0

3
.5

3
1
3

1
.6

8
6
7

1
.5

2
3
3
2

2
.4

9
1
5

1
.2

9
6
8

0
.9

0
3
4
0

3
.0

2
1
5

1
.5

8

8
6
3

1
.6

3
3
7
6

3
.1

5
1
4

1
.4

9
6
5

1
.8

5
3
8
6

2
.8

5
1
3

1
.7

0
6
7

0
.8

7
3
9
9

2
.8

0
1
4

1
.4

7
7
0

2
.2

3
4
0
8

3
.4

3
1
6

1
.8

3

9
6
7

1
.4

2
3
1
9

3
.0

1
1
4

1
.6

5
6
9

1
.4

5
3
2
7

2
.7

5
1
5

2
.5

4
7
2

2
.3

8
3
3
8

3
.3

2
1
6

2
.4

4
7
2

1
.8

6
3
4
6

1
.7

5
1
6

1
.6

0

1
0

6
8

3
.1

2
3
8
7

3
.4

3
1
4

2
.2

8
6
9

1
.4

5
3
9
7

2
.2

1
1
6

1
.7

0
7
1

2
.8

8
4
1
1

3
.4

5
1
6

2
.2

6
7
2

1
.8

8
4
1
9

2
.7

2
1
6

1
.5

7

E. Test results with sample standard deviations 50

S
a
m

p
le

st
a
n
d
a
rd

d
e
v
ia

ti
o
n
s

w
it
h

(S
R

IL
,
#

o
f
R
T

ta
sk

s)
=

(2
,
1
0
)

1
re

so
u
rc

e
2

re
so

u
rc

e
s

3
re

so
u
rc

e
s

4
re

so
u
rc

e
s

C
P
U

&
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U

ta
sk

#
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ

i4
8
6

1
1
5
1

3
.8

5
2
2

1
.0

5
3
4

2
.2

3
1
5
7

3
.4

9
2
1

0
.7

8
3
7

1
.3

6
1
7
0

7
.6

3
2
3

1
.6

5
3
9

1
.2

0
1
7
4

4
.3

1
2
2

0
.6

9
4
3

1
.9

1

2
1
3
2

2
.7

2
1
7
9

4
.9

3
2
7

0
.8

4
1
4
0

1
.8

5
1
8
5

2
.3

5
3
1

0
.5

7
1
4
9

2
.8

5
2
0
2

1
2
.0

1
3
4

0
.8

4
1
5
4

2
.9

0
2
0
7

5
.9

8
3
8

1
.0

9

3
1
2
2

2
.2

2
3
1
5

4
.6

4
2
7

1
.2

2
1
3
0

0
.7

3
3
2
7

5
.3

5
3
1

0
.8

2
1
4
2

2
.9

3
3
5
6

1
3
.7

9
3
5

2
.4

5
1
4
8

3
.1

4
3
6
1

6
.5

6
3
7

1
.2

3

4
1
3
1

4
.4

7
4
6
5

7
.0

0
2
6

1
.4

1
1
3
9

0
.9

5
4
8
6

5
.6

9
3
1

0
.4

7
1
4
7

3
.8

0
5
2
9

1
7
.1

7
3
4

0
.7

1
1
5
5

3
.6

7
5
4
0

1
0
.0

2
3
8

1
.6

4

5
1
3
6

3
.5

0
4
7
7

9
.9

1
2
7

1
.7

7
1
4
4

2
.3

7
5
0
0

7
.1

0
3
2

1
.1

6
1
5
6

4
.0

3
5
3
6

1
4
.2

4
3
5

1
.8

6
1
6
2

3
.9

9
5
6
3

1
4
.8

4
3
8

1
.3

3

6
1
3
5

3
.0

3
6
1
3

1
1
.6

6
2
8

0
.8

7
1
4
5

1
.3

8
6
4
4

7
.0

9
3
2

1
.2

6
1
5
4

3
.6

2
6
9
3

1
7
.8

0
3
6

0
.6

3
1
6
2

4
.0

9
7
2
5

1
7
.0

8
3
9

1
.6

5

7
1
4
2

3
.2

4
7
4
0

1
3
.7

2
2
9

1
.2

3
1
4
9

2
.0

6
7
7
8

7
.3

1
3
2

0
.8

0
1
6
0

3
.8

8
8
3
8

2
3
.0

7
3
5

2
.1

1
1
8
0

4
.7

8
8
6
7

1
7
.6

3
4
9

1
8
.0

0

8
1
4
0

2
.7

3
8
8
2

1
5
.3

8
2
8

1
.2

0
1
5
4

5
.8

2
9
4
1

2
3
.4

2
3
2

1
.2

3
1
6
7

1
4
.4

3
1
0
3
3

2
6
.2

0
4
7

1
8
.8

3
1
8
5

9
.5

8
1
0
8
4

2
0
.9

5
5
4

2
0
.7

1

9
1
4
7

3
.4

1
7
9
4

1
4
.0

4
2
9

1
.6

1
1
5
6

3
.4

4
8
4
0

3
.2

5
3
3

1
.8

7
1
6
9

5
.1

4
9
0
0

2
7
.7

1
3
7

1
.8

7
1
7
3

3
.4

3
9
4
8

2
1
.0

2
3
9

1
.2

6

1
0

1
4
9

3
.7

3
9
4
1

1
5
.8

3
2
9

1
.0

4
1
6
1

3
.0

3
9
9
6

5
.1

2
3
5

1
.2

3
1
6
7

4
.5

7
1
0
6
9

3
2
.2

9
3
7

1
.2

3
2
0
1

6
.6

2
1
1
2
1

2
3
.7

4
5
7

2
6
.6

9

i6
8
6

1
5
9

1
.0

0
1
4

0
.6

2
1
3

0
.9

1
6
2

1
.3

5
1
4

0
.6

4
1
4

1
.0

7
6
4

1
.0

0
1
4

0
.3

4
1
5

1
.0

0
6
5

1
.3

8
1
4

0
.4

0
1
5

1
.0

6

2
5
7

1
.1

1
7
6

1
.4

0
1
2

1
.2

5
5
9

0
.7

9
7
8

1
.5

7
1
3

0
.8

1
6
1

0
.6

1
8
0

1
.1

9
1
3

1
.1

9
6
1

0
.6

3
8
2

1
.5

9
1
4

0
.8

2

3
5
6

1
.4

7
1
2
9

2
.2

4
1
2

1
.6

3
5
6

1
.1

2
1
3
4

2
.1

7
1
2

1
.5

4
5
9

0
.9

7
1
3
8

2
.1

8
1
4

0
.9

8
5
9

0
.8

5
1
3
9

1
.3

4
1
4

0
.6

5

4
5
8

1
.4

9
1
9
7

2
.8

7
1
2

0
.8

3
6
0

1
.1

7
2
0
1

2
.5

5
1
3

0
.9

5
6
1

1
.3

0
2
0
9

2
.0

5
1
4

2
.0

2
6
4

0
.5

0
2
1
1

1
.9

3
1
4

0
.9

0

5
6
1

1
.4

2
2
0
3

2
.0

2
1
4

1
.0

8
6
3

0
.9

5
2
0
8

2
.0

9
1
3

1
.5

1
6
5

0
.8

0
2
1
5

1
.9

0
1
6

1
.5

5
6
7

1
.5

9
2
1
9

1
.3

5
1
6

1
.2

8

6
6
1

1
.3

8
2
6
3

2
.9

5
1
4

1
.2

5
6
3

0
.7

5
2
7
1

2
.4

2
1
4

1
.0

0
6
5

0
.6

4
2
8
1

2
.0

5
1
5

1
.2

4
6
6

1
.2

9
2
8
6

2
.2

3
1
5

1
.5

1

7
6
3

3
.5

3
3
1
2

4
.3

9
1
3

2
.5

0
6
5

2
.5

1
3
2
2

3
.8

2
1
3

1
.4

7
6
8

0
.8

4
3
3
3

2
.2

5
1
5

1
.9

6
6
7

0
.7

5
3
3
9

2
.6

7
1
5

1
.8

8

8
6
3

3
.1

3
3
7
5

3
.3

6
1
3

1
.8

5
6
5

0
.7

4
3
8
8

3
.1

7
1
3

0
.8

6
6
7

1
.2

2
4
0
1

2
.4

0
1
5

1
.2

4
6
9

1
.2

2
4
0
6

2
.1

9
1
5

1
.1

5

9
6
6

1
.8

7
3
2
1

6
.2

4
1
5

1
.7

1
6
9

1
.7

5
3
2
7

1
.6

0
1
6

1
.7

4
7
2

1
.8

1
3
3
9

3
.7

7
1
7

1
.5

7
7
4

2
.1

7
3
4
5

2
.4

3
1
6

1
.5

0

1
0

6
6

3
.6

4
3
8
7

6
.7

1
1
6

1
.9

3
6
9

1
.2

0
3
9
6

1
.4

5
1
6

1
.6

6
7
0

2
.4

9
4
1
1

4
.2

5
1
6

1
.2

6
7
1

1
.4

6
4
1
9

2
.6

5
1
5

1
.8

8

S
a
m

p
le

st
a
n
d
a
rd

d
e
v
ia

ti
o
n
s

w
it
h

(S
R

IL
,
#

o
f
R
T

ta
sk

s)
=

(5
,
1
0
)

1
re

so
u
rc

e
2

re
so

u
rc

e
s

3
re

so
u
rc

e
s

4
re

so
u
rc

e
s

C
P
U

&
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U

ta
sk

#
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ

i4
8
6

1
1
5
3

4
.3

7
2
2

0
.9

1
3
4

3
.9

3
1
5
8

4
.1

9
2
1

0
.9

5
3
7

2
.8

6
1
6
2

2
.0

0
2
2

1
.3

4
3
9

0
.7

5
1
7
4

6
.8

2
2
2

1
.2

2
4
4

4
.2

9

2
1
3
2

3
.7

5
1
8
0

4
.5

9
2
7

0
.6

1
1
3
9

2
.0

7
1
8
5

6
.1

2
3
1

0
.6

5
1
4
6

1
.1

5
1
9
0

3
.0

3
3
4

0
.9

4
1
5
4

3
.7

2
2
0
8

9
.4

0
3
8

2
.1

6

3
1
2
5

4
.0

8
3
1
7

6
.1

5
2
6

0
.9

8
1
3
2

1
.4

9
3
3
1

8
.4

0
3
1

0
.7

0
1
3
9

1
.9

7
3
3
9

5
.3

9
3
4

0
.9

1
1
4
7

3
.0

1
3
6
0

1
2
.5

4
3
8

2
.4

1

4
1
3
1

3
.8

7
4
7
0

8
.0

6
2
6

1
.2

1
1
4
0

1
.2

4
4
9
2

9
.9

7
3
1

0
.6

6
1
4
5

3
.3

8
5
0
8

6
.8

9
3
3

0
.9

7
1
5
5

3
.3

5
5
3
9

1
5
.1

2
3
8

2
.4

9

5
1
3
6

3
.0

2
4
8
0

6
.7

0
2
8

0
.8

7
1
4
3

1
.6

5
5
0
1

7
.9

9
3
1

0
.8

5
1
5
3

1
.7

0
5
2
1

5
.8

9
3
5

2
.0

9
1
5
8

2
.2

5
5
6
4

1
7
.8

6
3
9

2
.7

4

6
1
3
5

3
.3

0
6
1
6

9
.2

9
2
7

1
.1

5
1
4
5

1
.7

3
6
4
5

8
.8

0
3
2

1
.2

6
1
5
2

2
.3

8
6
7
4

6
.1

0
3
6

1
.0

2
1
5
8

4
.1

4
7
1
2

1
2
.9

4
4
0

1
.1

1

7
1
4
0

3
.9

6
7
4
6

1
6
.9

0
2
7

1
.4

9
1
4
9

1
.3

0
7
8
4

1
1
.0

4
3
2

1
.1

2
1
5
7

1
.8

9
8
1
1

9
.6

8
3
4

2
.1

8
1
7
6

3
.5

4
8
6
4

2
1
.0

6
4
9

1
7
.7

7

8
1
4
0

2
.4

3
8
9
0

3
0
.2

6
2
7

1
.3

9
1
5
3

5
.0

4
9
5
1

2
4
.1

7
3
2

2
.4

8
1
5
7

1
.6

6
1
0
0
2

8
.6

2
3
6

1
.3

6
1
8
3

4
.5

2
1
0
7
6

2
4
.5

3
5
8

2
1
.9

0

9
1
4
9

4
.0

8
7
9
6

1
6
.4

8
2
8

1
.8

1
1
5
6

2
.2

2
8
4
2

9
.9

3
3
3

1
.9

8
1
6
6

3
.6

5
8
6
8

4
.4

9
3
7

1
.7

7
1
7
4

5
.7

6
9
4
7

2
1
.8

4
4
0

0
.9

3

1
0

1
4
8

3
.1

1
9
4
5

1
9
.8

0
3
0

0
.7

0
1
5
9

2
.6

6
9
9
7

1
0
.9

5
3
5

2
.3

7
1
6
4

3
.5

5
1
0
3
3

6
.2

1
3
6

2
.2

5
2
0
2

1
0
.4

1
1
1
2
0

2
6
.4

6
5
6

2
5
.6

5

i6
8
6

1
6
0

1
.6

3
1
4

0
.4

0
1
3

0
.9

2
6
2

0
.6

5
1
4

0
.4

9
1
4

0
.9

3
6
3

1
.2

2
1
4

0
.5

1
1
5

0
.6

2
6
5

1
.1

3
1
4

0
.4

1
1
5

0
.8

2

2
5
8

0
.4

9
7
6

1
.8

0
1
2

0
.9

0
5
9

0
.7

8
7
8

0
.7

6
1
2

0
.6

6
6
0

1
.5

7
8
0

1
.5

5
1
4

0
.9

0
6
2

1
.0

6
8
1

1
.3

1
1
4

1
.0

3

3
5
5

1
.1

3
1
3
1

2
.6

8
1
2

0
.6

8
5
6

1
.5

6
1
3
4

1
.5

2
1
2

1
.3

5
5
9

0
.9

5
1
3
7

2
.3

2
1
3

1
.8

7
5
9

0
.9

5
1
3
9

1
.7

8
1
3

1
.1

7

4
5
8

1
.1

8
1
9
8

3
.0

9
1
2

1
.1

2
6
1

1
.6

2
2
0
2

2
.0

9
1
3

1
.2

0
6
2

1
.2

2
2
0
8

2
.8

4
1
3

1
.0

8
6
4

1
.2

2
2
1
1

2
.5

0
1
4

1
.5

7

5
6
2

0
.9

5
2
0
3

2
.9

8
1
2

1
.4

7
6
3

0
.9

5
2
0
9

1
.2

7
1
4

0
.8

4
6
4

0
.5

6
2
1
5

2
.7

2
1
6

1
.3

9
6
7

0
.9

8
2
2
0

2
.3

6
1
6

1
.3

4

6
6
0

1
.1

0
2
6
5

2
.7

0
1
4

2
.1

1
6
3

1
.7

1
2
7
2

1
.4

1
1
4

1
.1

1
6
5

2
.0

8
2
8
0

2
.8

3
1
6

1
.4

4
6
6

1
.3

0
2
8
7

1
.7

0
1
6

1
.0

9

7
6
3

2
.0

7
3
1
4

3
.3

1
1
4

1
.6

9
6
5

1
.5

9
3
2
2

1
.9

7
1
3

1
.6

2
6
7

1
.0

4
3
3
3

3
.2

5
1
4

1
.2

7
6
8

1
.1

0
3
4
1

3
.3

1
1
5

1
.7

0

8
6
4

1
.7

7
3
7
7

2
.9

5
1
2

1
.0

7
6
5

1
.9

5
3
8
8

2
.5

2
1
4

1
.6

6
6
7

1
.0

8
4
0
0

3
.5

9
1
4

1
.7

7
6
9

1
.4

2
4
0
9

3
.6

0
1
5

1
.7

3

9
6
6

1
.6

2
3
1
8

1
.6

6
1
5

1
.2

3
6
9

1
.1

1
3
2
9

3
.0

9
1
6

0
.9

3
7
1

1
.8

2
3
3
8

2
.7

6
1
6

1
.6

1
7
4

1
.4

0
3
4
6

7
.2

0
1
7

1
.5

1

1
0

6
7

1
.4

5
3
8
5

2
.8

6
1
5

1
.7

1
6
8

2
.1

1
3
9
7

2
.9

1
1
7

1
.3

9
7
1

1
.2

1
4
0
9

3
.1

2
1
6

1
.5

9
7
2

0
.8

0
4
2
0

7
.8

2
1
7

1
.5

1

E. Test results with sample standard deviations 51

S
a
m

p
le

st
a
n
d
a
rd

d
e
v
ia

ti
o
n
s

w
it
h

(S
R

IL
,
#

o
f
R
T

ta
sk

s)
=

(1
0
,
1
0
)

1
re

so
u
rc

e
2

re
so

u
rc

e
s

3
re

so
u
rc

e
s

4
re

so
u
rc

e
s

C
P
U

&
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U

ta
sk

#
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ

i4
8
6

1
1
5
3

2
.3

7
2
2

0
.5

6
3
3

2
.6

6
1
5
6

3
.1

6
2
1

0
.7

4
3
7

1
.4

6
1
6
5

6
.2

1
2
2

1
.6

6
4
0

1
.9

1
1
7
3

5
.5

0
2
2

0
.7

7
4
2

0
.8

6

2
1
3
1

1
.4

3
1
8
0

2
.5

0
2
7

0
.7

1
1
3
9

1
.9

8
1
8
5

2
.9

9
3
2

0
.8

4
1
4
7

2
.8

0
1
9
4

9
.8

8
3
4

1
.0

6
1
5
4

2
.5

9
2
0
7

7
.0

1
3
7

1
.2

4

3
1
2
4

2
.3

4
3
1
8

4
.4

4
2
6

0
.8

3
1
3
1

2
.5

7
3
2
8

7
.4

9
3
1

1
.3

5
1
4
1

4
.4

8
3
4
7

1
0
.0

8
3
5

1
.0

8
1
4
7

4
.8

4
3
5
8

8
.6

7
3
8

1
.2

6

4
1
2
9

1
.3

9
4
6
9

6
.8

8
2
6

0
.8

3
1
4
0

0
.9

0
4
8
8

7
.9

3
3
1

0
.8

5
1
4
5

2
.8

4
5
1
8

1
3
.8

9
3
3

1
.4

2
1
5
6

3
.4

5
5
3
6

1
3
.8

9
3
8

2
.0

3

5
1
3
5

1
.7

1
4
7
7

4
.4

8
2
7

1
.2

9
1
4
2

1
.4

3
4
9
9

7
.9

4
3
2

0
.9

0
1
5
4

5
.5

6
5
2
7

1
6
.5

5
3
5

1
.3

9
1
5
8

2
.6

6
5
6
2

1
3
.2

4
3
9

1
.0

3

6
1
3
4

1
.3

1
6
1
2

5
.3

9
2
7

1
.2

4
1
4
5

1
.2

4
6
4
1

8
.8

3
3
2

1
.3

2
1
5
3

3
.2

9
6
8
1

2
1
.3

3
3
7

1
.3

3
1
6
2

1
.6

2
7
2
0

1
5
.2

6
3
8

0
.9

3

7
1
4
1

1
.5

9
7
4
0

8
.3

7
2
7

1
.7

7
1
4
8

0
.8

7
7
7
8

7
.3

9
3
1

0
.9

2
1
5
9

6
.9

1
8
2
3

2
3
.1

6
3
4

1
.7

9
1
7
6

4
.3

8
8
6
3

1
9
.8

5
5
9

2
2
.8

7

8
1
3
8

2
.3

7
8
8
1

7
.1

3
2
7

2
.1

2
1
5
5

3
.9

3
9
3
7

2
1
.3

2
3
3

1
.8

5
1
6
2

1
0
.0

5
1
0
1
6

2
9
.9

5
3
6

1
.5

1
1
8
4

4
.5

1
1
0
7
7

2
2
.5

0
6
3

2
9
.7

0

9
1
4
9

4
.0

8
7
9
6

8
.4

4
2
9

1
.1

3
1
5
7

3
.6

4
8
4
4

9
.5

4
3
3

1
.4

0
1
6
8

6
.1

1
8
8
4

3
6
.5

9
3
6

2
.6

0
1
7
2

3
.5

4
9
4
9

2
3
.8

8
4
0

0
.7

0

1
0

1
5
1

4
.9

9
9
4
5

8
.7

6
3
0

1
.7

5
1
5
9

3
.9

7
1
0
0
1

9
.5

3
3
4

2
.4

5
1
6
7

5
.1

4
1
0
5
2

3
8
.5

0
3
6

2
.3

4
2
0
5

3
.8

1
1
1
2
2

2
5
.6

4
4
8

1
5
.6

6

i6
8
6

1
6
1

1
.3

0
1
4

0
.6

7
1
3

0
.4

5
6
1

1
.6

5
1
4

0
.3

3
1
4

0
.8

7
6
3

0
.7

0
1
4

0
.3

5
1
5

0
.6

9
6
6

1
.4

8
1
4

0
.3

0
1
5

1
.1

7

2
5
7

0
.5

4
7
7

0
.8

3
1
2

0
.7

7
5
9

0
.5

3
7
8

1
.8

2
1
3

0
.6

1
6
0

0
.7

3
8
0

0
.6

8
1
4

0
.5

4
6
2

1
.0

0
8
2

1
.4

3
1
4

1
.4

4

3
5
5

1
.5

4
1
3
0

1
.3

1
1
2

0
.8

0
5
7

2
.5

6
1
3
4

2
.7

4
1
3

1
.6

3
5
9

1
.0

4
1
3
7

1
.4

1
1
4

1
.3

4
5
9

0
.5

3
1
4
1

2
.5

5
1
4

1
.4

7

4
5
7

1
.1

4
1
9
7

1
.9

7
1
1

0
.8

8
6
0

1
.6

9
2
0
3

4
.2

9
1
3

1
.4

0
6
2

1
.2

7
2
0
8

1
.4

0
1
3

1
.7

3
6
4

0
.2

3
2
1
3

2
.6

8
1
4

1
.4

3

5
6
1

0
.9

1
2
0
2

2
.0

0
1
4

0
.8

3
6
2

1
.7

5
2
0
9

2
.7

4
1
3

1
.4

6
6
5

1
.2

5
2
1
6

1
.3

1
1
5

1
.5

8
6
7

1
.0

8
2
2
0

1
.6

7
1
4

1
.9

2

6
6
1

1
.1

9
2
6
4

1
.8

4
1
3

1
.1

8
6
4

2
.0

6
2
7
2

2
.2

0
1
4

1
.5

6
6
5

1
.3

9
2
8
1

1
.8

5
1
6

1
.3

3
6
6

0
.9

8
2
8
6

1
.9

9
1
4

1
.8

0

7
6
4

1
.7

5
3
1
3

2
.7

5
1
2

1
.4

6
6
5

1
.7

4
3
2
3

3
.3

5
1
3

2
.2

1
6
7

0
.9

7
3
3
2

2
.1

8
1
6

1
.9

5
6
9

2
.4

3
3
4
0

3
.7

5
1
6

1
.4

6

8
6
3

1
.9

2
3
7
7

2
.6

4
1
3

1
.7

8
6
5

0
.9

8
3
8
9

3
.2

6
1
3

1
.7

2
6
7

0
.8

3
4
0
0

2
.4

6
1
4

2
.2

4
6
8

1
.2

1
4
1
0

4
.0

4
1
6

1
.3

9

9
6
7

0
.8

4
3
1
9

2
.4

4
1
5

1
.6

1
6
9

3
.5

5
3
2
9

2
.4

0
1
7

2
.5

1
7
2

3
.1

1
3
3
8

3
.5

8
1
6

0
.9

9
7
2

1
.6

8
3
4
5

1
.2

0
1
6

1
.5

0

1
0

6
7

1
.8

8
3
8
6

2
.5

1
1
4

1
.4

2
6
9

0
.8

5
3
9
8

5
.4

8
1
6

1
.3

0
7
0

1
.6

3
4
1
0

4
.6

9
1
6

2
.2

6
7
2

2
.0

5
4
1
7

1
.6

7
1
8

2
.2

6

S
a
m

p
le

st
a
n
d
a
rd

d
e
v
ia

ti
o
n
s

w
it
h

(S
R

IL
,
#

o
f
R
T

ta
sk

s)
=

(2
0
,
1
0
)

1
re

so
u
rc

e
2

re
so

u
rc

e
s

3
re

so
u
rc

e
s

4
re

so
u
rc

e
s

C
P
U

&
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U
A

E
T

A
T

R
E

A
R

U

ta
sk

#
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ
x

σ

i4
8
6

1
1
5
0

2
.4

4
2
1

0
.6

4
3
3

1
.3

7
1
5
7

3
.4

3
2
0

0
.8

9
3
6

1
.3

9
1
6
7

5
.9

9
2
1

1
.6

0
4
1

2
.3

8
1
7
0

4
.0

3
2
2

0
.6

3
4
3

1
.2

4

2
1
3
1

2
.0

1
1
7
7

2
.7

7
2
7

1
.1

8
1
3
9

1
.9

3
1
8
2

3
.5

0
3
1

0
.5

2
1
4
9

3
.8

1
1
9
5

9
.7

7
3
4

1
.5

5
1
5
3

1
.8

6
2
0
3

4
.6

7
3
8

1
.1

5

3
1
2
4

1
.9

9
3
1
3

4
.6

6
2
6

0
.8

3
1
3
2

4
.2

9
3
3
0

8
.3

9
3
1

1
.4

1
1
4
1

3
.7

8
3
5
2

1
2
.7

9
3
5

1
.6

3
1
4
6

2
.3

4
3
5
5

5
.2

3
3
8

1
.0

2

4
1
3
1

3
.3

0
4
6
4

6
.3

6
2
6

1
.1

0
1
4
0

0
.9

2
4
9
1

7
.5

4
3
0

0
.5

8
1
4
6

3
.0

5
5
2
4

1
7
.1

2
3
4

1
.4

9
1
5
4

1
.3

4
5
3
2

6
.9

6
3
7

1
.4

9

5
1
3
6

2
.6

7
4
7
5

5
.5

9
2
7

1
.7

2
1
4
6

4
.4

2
5
0
1

6
.5

3
3
2

0
.8

4
1
5
5

2
.8

9
5
3
0

1
5
.5

1
3
5

1
.4

4
1
5
9

2
.1

0
5
5
6

9
.6

3
3
9

1
.0

3

6
1
3
5

2
.2

1
6
1
1

6
.9

9
2
8

1
.8

8
1
4
5

1
.9

5
6
4
6

8
.1

4
3
2

1
.1

9
1
5
6

3
.0

1
6
8
5

1
8
.2

7
3
6

1
.5

1
1
6
1

2
.0

3
7
1
5

1
0
.8

5
3
9

0
.8

4

7
1
4
0

4
.3

8
7
3
7

9
.2

4
2
7

1
.3

2
1
4
9

2
.0

9
7
8
4

7
.5

9
3
1

1
.4

3
1
5
9

2
.9

8
8
3
0

2
5
.7

6
3
4

1
.7

7
1
7
5

2
.4

3
8
5
4

9
.3

4
5
8

2
2
.1

1

8
1
4
1

3
.6

4
8
7
8

1
1
.2

6
2
7

2
.0

0
1
4
8

0
.9

0
9
6
6

7
.3

9
3
1

1
.1

6
1
6
4

9
.3

2
1
0
2
4

2
9
.5

2
4
1

1
6
.7

4
1
8
7

5
.4

4
1
0
6
6

9
.8

6
7
1

3
5
.0

5

9
1
4
9

5
.0

1
7
9
1

9
.5

3
2
9

1
.4

4
1
5
8

4
.0

8
8
3
9

1
0
.3

4
3
3

1
.3

3
1
6
9

4
.8

1
8
8
4

2
5
.3

7
3
7

1
.8

7
1
7
3

2
.8

9
9
4
2

1
1
.6

2
3
9

1
.2

0

1
0

1
4
8

3
.4

4
9
4
0

1
1
.4

1
2
9

1
.0

4
1
5
9

3
.5

4
9
9
7

1
1
.7

3
3
3

1
.8

7
1
6
6

2
.7

5
1
0
5
3

2
8
.5

9
3
8

1
.8

6
2
0
1

6
.2

0
1
1
1
5

1
2
.4

0
4
9

2
4
.4

8

i6
8
6

1
6
0

1
.7

6
1
4

0
.4

7
1
3

0
.9

2
6
1

1
.1

2
1
4

0
.2

9
1
4

0
.6

1
6
3

0
.9

3
1
4

0
.4

3
1
5

1
.1

2
6
5

1
.3

4
1
4

0
.5

2
1
6

1
.0

7

2
5
7

0
.9

1
7
6

1
.6

0
1
2

0
.8

9
5
9

0
.9

5
7
8

1
.0

6
1
2

0
.8

1
6
1

1
.0

2
8
0

0
.8

3
1
4

1
.3

4
6
2

1
.5

5
8
2

1
.5

7
1
4

1
.2

5

3
5
5

1
.4

1
1
3
0

2
.4

3
1
2

0
.7

7
5
6

1
.6

7
1
3
4

1
.4

3
1
3

1
.0

4
5
9

0
.7

2
1
3
8

2
.6

2
1
3

0
.9

2
6
0

1
.3

8
1
4
0

2
.7

9
1
4

1
.4

0

4
5
8

2
.6

6
1
9
7

2
.6

8
1
2

1
.1

3
6
0

1
.8

3
2
0
1

2
.4

0
1
3

0
.4

8
6
1

0
.9

6
2
1
0

3
.3

5
1
4

1
.0

4
6
4

1
.7

9
2
1
2

4
.0

1
1
4

1
.3

0

5
6
2

2
.0

9
2
0
2

2
.1

4
1
3

0
.9

3
6
3

1
.1

7
2
0
9

1
.9

7
1
4

1
.1

9
6
6

0
.9

1
2
1
5

2
.0

3
1
5

1
.6

3
6
8

2
.2

1
2
2
0

4
.2

3
1
6

1
.1

8

6
6
1

1
.4

8
2
6
4

3
.0

0
1
3

0
.8

9
6
3

1
.4

3
2
7
2

0
.9

8
1
4

1
.3

2
6
5

0
.9

9
2
8
1

2
.3

4
1
5

1
.9

3
6
7

1
.0

1
2
8
8

5
.6

7
1
5

0
.9

2

7
6
3

2
.0

7
3
1
3

4
.0

6
1
3

0
.8

0
6
4

1
.1

0
3
2
3

2
.6

0
1
4

0
.7

6
6
7

1
.4

5
3
3
3

3
.6

4
1
5

2
.0

4
6
8

0
.8

3
3
4
1

5
.7

8
1
5

1
.7

4

8
6
4

2
.5

8
3
7
6

3
.9

2
1
3

1
.7

7
6
4

1
.4

2
3
8
7

3
.0

9
1
4

1
.4

4
6
7

2
.2

3
4
0
1

3
.4

4
1
6

2
.9

0
7
0

1
.9

7
4
0
9

6
.5

4
1
4

1
.2

7

9
6
8

4
.2

4
3
1
9

2
.8

0
1
5

1
.8

9
6
9

1
.7

5
3
2
8

1
.6

6
1
6

2
.1

0
7
2

1
.5

3
3
4
0

7
.8

3
1
7

1
.3

4
7
4

2
.4

1
3
4
7

5
.9

0
1
7

1
.3

9

1
0

6
8

2
.0

4
3
8
7

5
.7

4
1
4

1
.5

0
6
9

1
.1

8
3
9
7

1
.9

4
1
6

2
.2

4
7
1

1
.2

1
4
1
2

7
.4

0
1
7

2
.0

3
7
2

1
.4

5
4
2
0

7
.7

0
1
7

1
.2

0

